Важные характеристики стали для инструментов

Характеристики и марки инструментальных сталей

Износостойкие инструменты и детали, к прочности которых предъявляются повышенные требования, предполагают использование инструментальных сталей, имеющих ряд важных отличий от конструкционных сталей.

Круглые заготовки инструментальной стали

Сферы применения инструментальных сталей

Инструментальная сталь представляет собой сплав, содержание углерода в котором составляет не менее 0,7%. Ее структура при этом может быть доэвтектоидной, ледебуритной или заэвтектоидной. Инструментальные стали с различной структурой отличаются наличием вторичных карбидов. В сплавах с доэвтектоидной структурой вторичных карбидов нет. Между тем, в каждой из таких структур карбиды в обязательном порядке присутствуют: они образуются при эвтектоидных модификациях либо являются результатом распада мартенсита.

Схема-классификация инструментальных материалов

В современной промышленности инструментальные стали нашли широкое применение. Их используют для производства:

  • рабочих деталей штампов, работающих по принципу холодного и горячего деформирования;
  • высокоточных изделий;
  • режущего инструмента;
  • измерительных приборов;
  • литейных прессформ, которые работают под давлением.

В зависимости от области применения инструментальных сталей к ним предъявляются определенные требования. Однако существуют общие для всех марок критерии соответствия:

  • достаточный уровень вязкости (особенно актуальна эта характеристика для деталей, подвергающихся в ходе эксплуатации ударам);
  • высокая прочность;
  • износостойкость;
  • высокий уровень твердости.

Варианты применения инструментальных сталей (на примере углеродистой)

НаименованиеМарка сталиПрименение
Углеродистая инструментальнаяУ7
У7А
Молотки, керны, отвертки, зубила, кузнечный инструмент, косы
Углеродистая инструментальнаяУ8
У8А
Ножницы, ножи рубильных машин, ручной столярный инструмент, рамные пилы
Углеродистая инструментальная, высокой твердостиУ10
У10А
Сверла, фрезы малого диаметра, ленточные пилы, развертки
Углеродистая инструментальная, повышенной твердостиУ12
У13
Токарные резцы по дереву, ножовочные полотна по металлу, надфили, напильники, граверный инструмент

Марки сплавов, предназначенных для применения в условиях холодной деформации, должны ко всему прочему обладать гладкой рабочей частью, способностью сохранять размеры и форму, а также отличаться пределом текучести и упругости. А инструментальная сталь, пригодная для работы в условиях горячей деформации, должна обладать высокой теплопроводностью, противостоять отпуску и быть устойчивой к температурным колебаниям. Особым требованиям должны соответствовать и марки сталей, используемых для производства режущего инструмента.

Требования к инструментальным сталям

Ко всем углеродистым инструментальным сталям предъявляются такие требования, как:

  • хорошая обрабатываемость методом резки металла;
  • низкая чувствительность к перегреву;
  • низкая восприимчивость к процессам прилипания и приваривания к обрабатываемым деталям;
  • хорошая шлифуемость;
  • восприимчивость к прокаливанию;
  • пластичность в горячем состоянии;
  • способность противостоять обезуглероживанию;
  • устойчивость к образованию трещин.

Виды инструментальных сталей

Все марки сталей для производства инструментов подразделяют на 5 основных групп.

Теплостойкие и вязкие

Как правило, это за- и доэвтектоидные стали, которые содержат в своем составе молибден, вольфрам и хром. Содержание углерода в таких легированных инструментальных сталях соответствует средним и низким значениям.

Высокотвердые и вязкие, нетеплостойкие

Такие сплавы отличает низкое содержание легированных элементов и среднее — углерода. Они также характеризуются невысокой прокаливаемостью.

Высокотвердые, теплостойкие и износостойкие

К таким маркам относятся быстрорежущие легированные стали (содержание легирующих элементов в них очень велико), а также сплавы с ледебуритной структурой, содержащие в своем составе более 3% углерода.

Износостойкие, высокотвердые и средней теплостойкости

Это стали с заэвтектоидной и ледебуритной структурой, в состав которых входит 2-3% углерода и от 5 до 12% хрома.

Высокотвердые и нетеплостойкие

Состав таких инструментальных сталей с заэвтектоидной структурой либо вообще не содержит легированных элементов, либо содержит их в незначительных количествах. Уровень твердости таких сплавов обеспечивается большим количеством углерода в их составе.

Классификация инструментальной стали в виде схемы

Важным параметром инструментальных сталей является уровень их твердости. Как правило, высокотвердые стали нежелательно применять для производства инструмента, который в процессе эксплуатации подвергается ударным нагрузкам. Объясняется это тем, что такие сплавы обладают невысокой вязкостью и значительной хрупкостью, что может привести к поломке инструмента, который из них изготовлен.

По уровню твердости можно выделить две категории инструментальных сталей:

  • с высоким уровнем вязкости (содержание углерода в пределах 0,4-0,7%);
  • с высокой износостойкостью и твердостью (углерода в них содержится больше: 0,7-1,5%).

Деталь гидромолота из высокотвердой стали

Классифицируют марки сталей и по степени их прокаливаемости. По данному критерию различают легированные стали с повышенной (возможный диаметр прокаливания 80-100 мм), высокой (50-80 мм) и низкой (10-25 мм) прокаливаемостью.

О маркировке инструментальных сталей

Для определения вида инструментальной стали требуется знание маркировки, которая включает в себя как буквенные, так и цифровые обозначения. Разобраться в этом несложно. Очень часто в маркировке сплавов встречается буква «У». Она означает, что перед вами углеродистая сталь. Цифры, идущие следом за такой буквой, говорят о содержании углерода в сплаве, исчисляемом в десятых долях процента. Встречается в маркировке углеродистых инструментальных сталей и буква «А», указывающая на то, что сплав относится к высококачественным.

Маркировка инструментальной стали (на примере углеродистой) с указанием содержания дополнительных элементов

Большую категорию инструментальных сталей составляют быстрорежущие сплавы, которые обозначаются буквой «Р». После этой буквы следуют цифры, по которым можно определить содержание основного легирующего элемента для сталей данной категории — вольфрама.

Содержание остальных элементов в составе быстрорежущих легированных сталей (молибдена, ванадия и кобальта) определяется по цифрам, следующим за соответствующими буквами в их маркировке — «М», «Ф» и «К». В состав быстрорежущих сплавов в обязательном порядке входит и хром, но его количество определяют по умолчанию — не более 4%.

Очень часто маркировка инструментальных сталей начинается с цифры (к примеру, 9ХС, 9Х, 6ХГВ), которая указывает на содержание (в десятых долях) в их составе углерода, если оно не превышает 1%. В том случае, если углерода в составе сплава содержится около 1%, то цифра в начале их маркировки не ставится вообще. На содержание остальных элементов (в целых долях) указывают цифры, которые стоят в маркировке за буквами, обозначающими соответствующий легирующий элемент.

Закалка и отпуск углеродистых инструментальных сталей

В ГОСТе 1435 оговаривается как состав углеродистых сталей, так и их основные характеристики. Содержание углерода в таких сплавах (что можно определить по их марке) составляет от 0,65 до 1,35%. Для того чтобы получить оптимальную структуру и требуемую твердость, перед началом производства инструмента эти сплавы подвергают отжигу. При этом для инструментальных сталей с заэфтектоидной структурой выполняется отжиг сферодизирующего типа. Проводимая по такой технологии термообработка приводит к появлению цементита зернистой формы. А получить зерна требуемого размера позволяет скорость охлаждения, которую можно легко регулировать.

Производственный процесс закалки стали

После того, как инструмент будет изготовлен, инструментальная сталь подвергается закалке и последующему отпуску. Это дает возможность получить материал требуемой твердости. Регулировать твердость готового инструмента также достаточно легко, это достигается путем выбора определенной температуры для проведения операции отпуска.

Так, для инструментов, подвергающихся в процессе эксплуатации систематическим ударным нагрузкам, оптимальной является твердость от 56 до 58 HRC, которую получают, проводя отпуск при температуре 290 градусов Цельсия. Самые строгие требования предъявляют к твердости плашек, граверных приспособлений, напильников (62-64 единицы по шкале HRC). Достигается она при помощи выполнения отпуска при температуре от 150 до 200 градусов Цельсия.

Закалка увеличивает твердость углеродистых сталей по той причине, что именно с ее помощью удается получить оптимальную структуру сплава железа и углерода. Варианты такой структуры:

  • карбиды с мартенситом;
  • только мартенсит.

Инструментальная штамповая сталь

Изделия из металла, получаемые методом деформирования, могут обрабатываться в нагретом и холодном состоянии. Соответственно, и штампы, с помощью которых обрабатываются такие детали, бывают холодно- и горячедеформированными. Естественно, что для производства штампов разных типов требуется использование различных марок инструментальной стали.

Так, для штампов холоднодеформированного типа и небольшой толщины (до 25 мм) применяют углеродистые стали У10, У11 и У12. Твердость сплавов данных марок находится в пределах от 57 до 59 единиц по HRC, они отличаются достаточной вязкостью, хорошим уровнем сопротивления деформациям пластического характера, способностью противостоять износу в процессе эксплуатации. Для более габаритного инструмента (толщина больше 25 мм), испытывающего в процессе эксплуатации более значительные нагрузки, применяют стали с повышенным содержанием хрома (Х9, Х, Х6ВФ).

Инструментальная штамповая сталь на складе

Изделия, регулярно испытывающие в процессе своей эксплуатации ударные нагрузки, должны отличаться высокой вязкостью (например, 4ХС4 и 5ХНМ). Чтобы обеспечить выполнение этого требования, в производстве используют легированные стали, состав которых обогащен специальными элементами, а уровень содержания углерода значительно снижен. Кроме того, необходима специальная термообработка таких инструментальных сталей.

Горячедеформированные штампы в процессе своей эксплуатации подвергаются не только значительным механическим, но и термическим нагрузкам. Естественно, что к инструментальным сталям для производства этих штампов (например, 5ХНМ и 4ХСМФ) предъявляются особые требования, такие как:

  • повышенная устойчивость к трещинообразованию в условиях постоянного нагрева и охлаждения инструмента;
  • высокий уровень теплопроводности и прокаливаемости;
  • устойчивость к образованию окалины.

Марки инструментальной стали.

Инструментальная сталь — легированная или углеродистая сталь, предназначенная для изготовления режущих и измерительных инструментов, штампов холодного и горячего деформирования, деталей машин, испытывающих повышенный износ при умеренных динамических нагрузках.

По форме, размерам и предельным отклонениям металлопродукция соответствует требованиям:

  • прокат стальной горячекатаный круглый — ГОСТ 2590-88;
  • прокат стальной горячекатаный квадратный — ГОСТ 2591-88;
  • прокат стальной горячекатаный шестигранный — ГОСТ 2879-88;
  • прутки кованые квадратные и круглые — ГОСТ 1113-88;
  • полосы — ГОСТ 103-76, ГОСТ 4405;
  • прутки, мотки калиброванные — ГОСТ 7417, ГОСТ 8559, ГОСТ 8560 квалитетов h11 и h12;
  • прутки со специальной отделкой поверхности — ГОСТ 14955 квалитетов h11 и h12.

Инструментальная легированная сталь ГОСТ 5950-2000

Легированная сталь — сталь, в которую в процессе легирования в определенных количествах вводят специальные элементы, обеспечивающие требуемые свойства. Такие элементы называют легирующими. Они могут повышать прочность и коррозионную стойкость стали и снижать опасность ее хрупкого разрушения.

Легирование стали может проводиться на различных этапах производства металла и заключается во введении легирующих элементов в расплав или шихту. В процессе легирования стали вводимые элементы могут образовывать с основой стали особые химические соединения. Такие интерметаллидные, карбидные и нитридные элементы обладают высокой твердостью и прочностью, химической стойкостью, жаропрочностью и т.п. Равномерное распределение по всему объему твердого раствора и достаточное количество этих элементов в стали придают металлу необходимые свойства при легировании стали.

Для легирования стали используются следующие химические элементы: марганец (Mn) — Г; кремний (Si) — С; хром (Cr) — Х; никель (Ni) — Н; медь (Cu) — Д; азот (N) — А; ванадий (V) — Ф; ниобий (Nb) — Б; вольфрам (W) — В; селен (Se) — Е; кобальт (Co) — К; бериллий (Be) — Л; молибден (Mo) — М; бор (B) — Р; титан (Ti) — Т; алюминий (Al) — Ю.

Чистые металлические элементы при легировании стали обычно не используются. Чаще для легирования стали применяют ферросплавы (сплавы железа) и лигатуры (вспомогательные сплавы). Это экономически выгоднее и позволяет избежать ряда технологических трудностей в процессе легирования стали.

ГОСТ 5950-2000 регулирует нормы изготовления прутков, полос и мотков горячекатаных, кованых, калиброванных и со специальной отделкой поверхности из инструментальной легированной стали, а также нормы химического состава для стали 3Х2МНФ, 4ХМНФС, 9ХФМ, слитков, заготовок, лент, труб, поковки и другой металлопродукции.

Классификация легированных сталей

По количеству легирующих элементов:

  • высоколегированная — общая масса легирующих элементов более 10%;
  • среднелегированная — общая масса легирующих элементов более 2,5-10%;
  • низколегированная — общая масса легирующих элементов до 2,5%.
  • I — для изготовления инструмента, используемого для обработки металлов и других материалов в холодном состоянии;
  • II — для изготовления инструмента, используемого для обработки металлов давлением при температурах выше 300°С.

По способу дальнейшей обработки:

  • а — горячекатаная и кованая металлопродукция для горячей обработки давлением и холодного волочения без контроля структурных характеристик;
  • б — горячекатаная и кованая металлопродукция для холодной механической обработки с полным объемом испытаний.

По качеству изготовления:

По качеству и отделке поверхности:

  • горячекатаная и кованая: 2ГП — для подгруппы «а», 3ГП — для подгруппы «б» повышенного качества, 4ГП — для подгруппы «б» обычного качества;
  • калиброванная — Б и В;
  • со специальной отделкой поверхности — В, Г, Д.
  • завод «Электросталь» — ЭИ;
  • златоустовский металлургический завод — ЗИ.

Марки инструментальной легированной стали

Марки инструментальной легированной стали I группы: 13Х, 8ХФ, 9ХФ, 11ХФ (ИХ), 9ХФМ, Х, 9Х1, 12Х1 (120Х, ЭП430), 6ХС, 9Г2Ф, 9ХВГ, 6ХВГ, 9ХС, В2Ф, ХГС, 4ХС, ХВСГФ, ХВГ, 6ХВ2С, 5ХВ2СФ, 6ХЗМФС (ЭП788), 7ХГ2ВМФ, 9Х5ВФ, 8Х6НФТ (85Х6НФТ), 6Х4М2ФС (ДИ55), Х6ВФ, 8Х4В2МФС2 (ЭП761), 11Х4В2МФ3° C2 (ДИ37), 6Х6В3МФС (ЭП569, 55Х6В3СМФ), Х12, Х12МФ, Х12Ф1, Х12ВМФ.

Марки инструментальной легированной стали II группы: 5ХНМ, 5ХНВ, 5ХНВС, 7Х3, 8Х3, 4ХМФС (40ХСМФ), 4ХМНФС, 3Х2МНФ, 5Х2МНФ (ДИ32), 4Х3ВМФ (3И2), 3Х3М3Ф, 4Х5 МФС, 4Х4ВМФС (ДИ22), 4Х5МФ1С (ЭП572), 4Х5В2ФС (ЭИ958), 4Х2В5МФ (ЭИ959), Х3В3МФС (ДИ23), 05Х12Н6Д2МФСГТ (ДИ80).

Обозначение марки стали: первые цифры — массовая доля углерода в десятых долях процента, затем буквы — вещество, используемое в качестве легирующего элемента, цифры, стоящие после букв, — средняя массовая доля соответствующего легирующего элемента в целых единицах процентов. Начальную цифру опускают, если содержание углерода не менее 1%. Буква «А», в середине марки стали — содержание азота, в конце — сталь высококачественная. Например, сталь 5ХНМ — 0,5 С, 1 Cr, 1 N1, до 0,3 Mo.

Нестандартные легированные стали, выпускаемые, например, заводом «Электросталь» обозначаются соответствующим сочетанием букв (в данном случае «ЭИ»), после которого идет порядковый номер стали. Например, ЭИ959, ЭП761, ДИ80 и др.

Применение инструментальной легированной стали

Марка сталиОбласть применения
Х12МФДетали для работы под давлением порядка 1400-1600Мпа. Профилировочные ролики сложной формы, эталонные шестерни, накатные плашки, секции кузнечных штампов, сложные дыропрошивные матрицы и пуансоны вырубных и просечных штампов, пуансоны и матрицы холодного выдавливания для больших давлений. Не применяется для сварных конструкций.
4-9ХС, ХВГОтветственные детали с повышенной износостойкостью, усталостной прочностью при изгибе, контактном нагружении, а также упругими свойствами. Сверла, развертки, метчики, плашки, гребенки, фрезы, машинные штампели, клейма для холодных работ. Не применяется для сварных конструкций.
4Х5МФСМелкие молотовые штампы, крупные молотовые и прессовые вставки при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного и массового производства, пресс-формы литья под давлением алюминиевых, цинковых и магниевых сплавов.
3Х3М3ФИнструменты для горячего деформирования на кривошипных прессах и горизонтально-ковочных машинах, подвергающихся в процессе работы интенсивному охлаждению (как правило, для мелкого инструмента), пресс-формы литья под давлением медных сплавов, ножи для горячей резки.
Р6М5, Р6М5К5, Р6М5Ф3, Р6М5К8, Р18, Р7М2Ф6, Р12МФ5, Р9М4К8, Р10М4К14, Р12М3К5Ф2, Р12М3К8Ф2, Р12М3К10Ф2, Р12М3К10Ф2Дисковые фрезы, сверла развертки, зенкеры, метчики, протяжки; фрезы червячные, концевые, дисковые; шеверы.

Инструментальная углеродистая сталь ГОСТ 1435-99

Углеродистая сталь — сталь, не имеющая в своем составе легирующих элементов, но содержащая углерод в различной концентрации: до 0,25% — низкоуглеродистая сталь, 0,24-0,6% среднеуглеродистая сталь, более 0,6 — высокоуглеродистая сталь.

ГОСТ 1435-94 регулирует нормы изготовления прутков и полос кованых, горячекатаных, калиброванных и со специальной отделкой поверхности из инструментальной углеродистой (нелегированной) стали, а также нормы химического состава для слитков, заготовок, листов, лент, проволоки и другой металлопродукции.

Классификация углеродистых сталей

  • быстрорежущая — Р;
  • шарикоподшипниковая — Ш;
  • электротехническая — Э.

По химическому составу:

  • качественная;
  • высококачественная — А.

По назначению в зависимости от массовой доли хрома, никеля и меди:

  • 1 — для продукции всех видов, кроме патентированной проволоки и ленты;
  • 2 — для патентированной проволоки и ленты;
  • 3 — для продукции всех видов, изготавливающейся с многократными нагревами, усиливающими возможность проявления графитизации стали, а также для продукции, от которой требуется повышенная прокаливаемость (кроме проката для сердечников, патентированной проволоки и ленты).

По способу дальнейшей обработки:

  • а — прокат горячекатаный и кованый для горячей обработки давлением (осадки, высадки), холодного волочения;
  • б — для холодной механической обработки (обточки, фрезерования и т.п.).

По качеству и отделке поверхности:

  • для горячекатаной и кованой стали: 2ГП — для подгруппы «а», 3ГП — для подгруппы «б»;
  • для калиброванной стали — Б и В.
  • для проката со специальной обработкой поверхности — В, Г, Д.

По состоянию материала:

  • сталь без термической обработки;
  • термически обработанная сталь — ТО;
  • нагартованный прокат — НГ (для прутков калиброванных и со специальной отделкой поверхности).

Марки инструментальной углеродистой стали

Марки инструментальной углеродистой стали: У7, У8, У8Г, У9, У10, У11, У11А, У12, У13, У13А, У7А, У8А, У8ГА, У9А, У10А, У12А.

Обозначение марки стали: У — углеродистая, следующая за ней цифра — средняя массовая дол углерода в десятых долях процента, Г — повышенная массовая доля марганца.

Применение инструментальной углеродистой стали

Марка сталиОбласть применения
У7(А)Инструменты для обработки дерева (топоры, стамески и т.п.); небольшие пневматические инструменты (зубила, обжимки и т.п.); кузнечные штампы; игольная проволока; слесарно-монтажные инструменты: молотки, кувалды, отвертки, плоскогубцы, кусачки и др.
У8(А), У8(Г, ГА), У9(А))Инструменты, используемые в условиях, не вызывающих разогрева режущей кромки и обрабатывающих дерево: фрезы, топоры, стамески, пилы и т.п. Накатные ролики, плиты и стержни для форм литья под давлением оловянно-свинцовистых сплавов. Для слесарно-монтажных инструментов (обжимки для заклепок, кернеры, отвертки, плоскогубцы, кусачки). Для профилей простой формы и пониженных классов точности; холоднокатаная лента толщиной 0,02-2,5мм.
У10А, У12А)Сердечники.
У10, У10А)Игольная проволока.
У10(А), У11(А))Инструменты, используемые в условиях, не вызывающих разогрева режущей кромки и обрабатывающих дерево: пилы ручные и машинные поперечные и столярные, сверла спиральные. Для штампов холодной штамповки (вытяжные, высадочные, обрезные, вырубные) небольших размеров; для калибров простой формы и пониженных классов точности; для накатных роликов, напильников, шаберов слесарных и т.п. Напильники, шаберы, х/к лента толщиной 0,02-2,5мм.
У12(А))Метчики ручные, напильники, шаберы слесарные; штампы для холодной штамповки (обрезные, вырубные) небольших размеров и без переходов по сечению; холодновысадочные пуансоны и штемпели мелких размеров, простой формы и пониженных классов точности.
У13(А))Инструменты с пониженной износостойкостью (без разогрева режущей кромки): напильники, бритвенные лезвия и ножи, скальпели, шаберы, гравировальные инструменты.

Инструментальная быстрорежущая сталь ГОСТ 19265-73

Прутки и полосы из инструментальной быстрорежущей стали изготавливаются согласно требованиям ГОСТ 19265-73.

Инструментальная быстрорежущая сталь используется для изготовления, чаще всего, режущих инструментов. Быстрорежущая инструментальная сталь сочетает в себе высокую теплоустойчивость (600-6500С в зависимости от состава и обработки) с высокой твердостью, износостойкостью (при повышенных температурах) и повышенным сопротивлением пластической деформации.

Свариваемость быстрорежущей стали: при стыковой электросварке со сталью 45 и 40Х свариваемость инструментальной стали хорошая.

Инструментальная быстрорежущая сталь может изготовляться методом легирования стали или без него. В последнем случае она будет являться одним из видов углеродистой стали. В зависимости от того к какому виду она относится, быстрорежущая инструментальная сталь обладает свойствами и классификацией легированной стали или углеродистой стали.

Марки инструментальной быстрорежущей стали

Марки инструментальной быстрорежущей стали: Р18, Р6М5, Р9К5, Р9К9, Р6М5К5, Р6М4К9, Р6М5Ф3, Р9М4К8 и т.д.

Обозначение марки стали: Р — быстрорежущая сталь, цифра — содержание вольфрама в десятых долях процента, М, К — легированная молибденом или кобальтом соответственно.

Инструментальные стали – зачем они нужны

Для производства износостойких и твердых инструментов используются инструментальные стали, имеющие значительные отличия от конструкционных сталей.

1 Инструментальные стали и сплавы – общие сведения

Под инструментальными подразумевают такие стали, в составе которых содержится не менее 0,7 процента углерода. В большинстве случаев они характеризуются доэвтектоидной, ледебуритной либо заэвтектоидной структурой.

Между собой они отличаются наличием вторичных карбидов (их нет в доэвтектоидных сплавах). При этом во всех структурах обязательно присутствуют карбиды, образующиеся при эвтектоидных модификациях или в процессе распада мартенсита.
Инструментальная сталь может предназначаться для:

  • холодного и горячего деформирования (штамповочная);
  • изделий высокой точности;
  • режущего инструмента;
  • измерительных изделий;
  • литейных прессформ, используемых под давлением.

В связи с этим любые марки инструментальной стали обязаны иметь достаточную вязкость (если они применяются для ударных изделий), высокую прочность, хорошую износостойкость и твердость. Кроме того, было установлено, что разные виды инструментальных сталей должны характеризоваться и рядом особых свойств, что позволяет изготавливать инструменты различных категорий.

Например, сплавы для холодной деформации должны дополнительно обладать гладкой поверхностью, высокой формо- и размероустойчивостью, а также пределом упругости и текучести при сжатии (так называемая “прочность на сжатие”), сплавы для деформации в горячих условиях – повышенной теплопроводностью, стойкостью к термическим колебаниям и против отпуска, теплостойкостью. Аналогичным требованиям должны соответствовать и инструментальные стали для режущего инструмента.

Также существует и несколько специальных технологически характеристик, коим обязаны соответствовать описываемые нами сплавы:

  • хорошая обрабатываемость резкой;
  • нечувствительность к перегреву;
  • малая восприимчивость к прилипанию и привариванию;
  • шлифуемость (шлифование металла важно для качественной эксплуатации инструмента, изготавливаемого из него);
  • хорошая прокаливаемость;
  • в горячем состоянии – пластичность;
  • невосприимчивость к обезуглероживанию;
  • малая склонность к образованию трещин на металле.

2 Классификация инструментальных сталей

Все инструментальные сплавы, как понятно из вышеизложенных фактов, имеют собственные характеристики и свойства. Именно по ним они и классифицируются. Выделяют 5 групп сталей для производства инструмента:

  • вязкие и теплостойкие: к ним относят за- и доэвтектоидные сплавы, легированные молибденом, вольфрамом, хромом, со средним либо малым содержанием углерода;
  • нетеплостойкие, высокотвердые и вязкие: содержание углерода – среднее, малопрокаливаемые, низколегированные;
  • теплостойкие, высокотвердые и износостойкие: быстрорежущие высоколегированные, а также ледебуритные сплавы (углерода в них обычно много – более 3%);
  • среднетеплостойкие, твердые и износостойкие: от 2 до 3 процентов углерода, хрома – от 5 до 12 процентов, к таковым относят заэвтектоидные и ледебуритные составы;
  • нетеплостойкие и твердые: малолегированные, нелегированные, и заэвтектоидные стали с большим количеством углерода.

Если сплав имеет высокую твердость, его нежелательно использовать для инструмента, эксплуатируемого при ударных нагрузках, так как такие составы не считаются вязкими. По уровню твердости можно выделить два вида сталей:

  • повышенновязкие (углерода в них 0,4–0,7%);
  • износостойкие и высокотвердые (содержание углерода – 0,7–1,5%).

Прокаливаемость также имеет огромное значение для классификации инструментальных сталей. Легированные составы описываются высокой (критический диаметр – 80–100 мм) и повышенной (50–80 мм) прокаливаемостью, углеродистые сплавы с вольфрамом – низкой (10–25 мм).

3 Маркировка инструментальных сталей

Разные виды инструментальных сплавов имеют различную маркировку. Разобраться в ней совсем несложно. Углеродистые стали обозначаются литерой “У”, после которой стоит какая-либо цифра (8, 7, 10), определяющая в десятых долях процента содержание в сплаве углерода. Если после цифры стоит литера “А”, это означает, что перед нами высококачественная продукция (наиболее распространена в этом плане инструментальная сталь марки У10А).

Маркировка быстрорежущих сплавов начинается с литеры “Р”. Затем указывается содержание вольфрама в стали (он является основным легирующим компонентом быстрорежущих композиций) и содержание молибдена, ванадия, кобальта (цифра после букв “М”, “Ф” и “К”). В маркировку не включается количество хрома, так как он присутствует в быстрорежущих сплавах в малых объемах (не более 4%).

Цифры в инструментальных легированных сталях типа 9ХС, Х, 6ХГВ, 9Х дают представление о том, сколько в сплаве имеется углерода (при условии, что его не более 1%) в десятых долях процента. Цифры нет вовсе, когда количество углерода примерно составляет 1%. А легирующие добавки обозначаются соответствующей буквой и цифрой, которая показывает их содержание (здесь уже имеются в виду целые проценты) в стали.

4 Углеродистая инструментальная сталь – ГОСТ 1435

Согласно данному Государственному стандарту под такими сталями понимают составы с содержанием углерода от 0,65 до 1,35 процента. Они обычно проходят отжиг до начала производства режущих инструментов, что позволяет сформировать благоприятную структуру составов и добиться оптимального показателя твердости материала. Отжиг сфероидизирующего вида проводится для заэвтектоидных сплавов. Это дает возможность получить зернистую форму вторичного цементита. А конкретной величины зерна несложно добиться, изменяя скорость охлаждения.

Финальным этапом термообработки является закалка инструментальной стали, после чего она подвергается отпуску, температура которого зависит от желаемой твердости инструмента. Так, для ударных изделий (молотки, зубила) температура отпуска равняется примерно 290 °С (в этом случае они имеют твердость от 56 до 58 HRC и необходимый показатель вязкости), для плашек, граверных приспособлений и напильников – не более 200 °С (от 150), что обеспечивает наибольшую твердость изделий на уровне 62–64 HRC.

Закаленные стали могут иметь один из двух вариантов структуры:

  • карбиды и мартенсит;
  • просто мартенсит.

Отметим отдельно и то, что неполная закалка стали предусмотрена для заэвтектоидных сплавов, а полная – для доэвтектоидных.

5 Сталь инструментальная штамповая

Штампы могут быть холодно- и горячедеформированными. Для холоднодеформированных небольших (не более 25 мм) штампов обычно используют стали марок У11, У10 и У12, которые характеризуются достаточной вязкостью (ударной) и стойкостью против износа, требуемым уровнем сопротивления деформациям пластического характера и HRC от 57 до 59.

Для инструмента с размерами выше 25 мм рекомендуется применять сталь Х9 или Х, реже – Х6ВФ. А вот для ударных изделий подходят сплавы 5ХНМ и 4ХС4. Они описываются очень высокой вязкостью, которая обеспечивается добавкой специальных легирующих компонентов, уменьшением содержания углерода и особым режимом термообработки.

Стали, идущие на горячедеформированные штампы (4ХСМФ, 5ХНМ и др.), должны, кроме того, обладать устойчивостью к трещинообразованию (при неоднократном цикле нагрева и последующего их охлаждения), повышенным уровнем прокаливаемости и теплопроводности, а также стойкости против возникновения окалины.


Марки инструментальных сталей

Вопрос увеличения эффективности обработки конструкционных сталей остается всегда актуальным. Исследования в этом направлении в одно время привели к появлению новых марок стальных сплавов, предназначенных исключительно для изготовления инструмента и оснастки под него. Название они получили соответствующее – инструментальные стали и сплавы. что их отличало от обычных конструкционных? Какими свойствами они обладали?

Общие сведения

Сталь, процент углерода в которой составляет более 0,7%, называют инструментальной. В основе фазовой структуры лежит мартенсит и только в некоторых случаях ледибурит.

Используется главным образом в машиностроении в качестве материала для производства инструмента по обработке черных и цветных сплавов.

Инструментальную сталь отличает ряд особенностей по сравнению с конструкционной. Среди них наиболее важными являются:

  • Повышенная твердость, которая составляет 60-65 единиц по шкале Роквелла.
  • Дополнительная прочность. Временное сопротивление на разрыв не должно быть ниже 900 МПа.
  • Способность сопротивляться воздействию абразивного износа.
  • Высокая прокаливаемость – свойство сталей термически упрочняться.
  • Красностойкость, которая характеризует металл с точки зрения способности сохранять свои прочностные характеристики при увеличении температурного воздействия на него.

Согласно государственным стандартам предусмотрены следующие разновидности инструментальных марок, исходя из их технологического назначения:

  • Инструментальные углеродистые стали ГОСТ 1435-99. Помечаются буквой «У» в начале маркировки. Цифра, следующая далее в обозначении, показывает углеродистую составляющую: У12, У10 и т.д. Размерность берется в сотых долях процента. В конце может ставиться буква «А» (например, У10А), которая показывает, что данная инструментальная сталь имеет уменьшенное количество отрицательных включений. В частности, это относится к сере и фосфору, элементам, ответственным за ухудшение механических свойств стального сплава.
  • Легированные инструментальные стали ГОСТ 5950-2000. Цифра, стоящая в начале, показывает сотую долу процента карбидов в стали. В случае ее отсутствия значение данного параметра принимается равным 1%. Далее следует буквенное обозначение легирующих элементов с указанием цифрами их содержания в целых долях процента: Х, 5ХВГ, 9ХС и прочее.
  • Быстрорежущие инструментальные стали ГОСТ 19265-73. В технической документации маркируются буквой «Р». Цифрой за ней обозначают ориентировочное содержание вольфрама – базового химического компонента для данной стали. Помимо него быстрорезы могут включать в своем составе кобальт и ванадий. Они также указываются в маркировке соответствующими буквами: К и Ф. Содержание хрома во всех быстрорежущих сталях колеблется в пределах 3-4%. По этой причине его не обозначают в маркировке.
  • Штампованные инструментальные стали ГОСТ 1265-74. Маркируется данный вид сталей аналогично легированным. По характеру применения они бывают штампованными сталями холодной и горячей деформации.

Рассмотрим каждый пункт теперь более подробно.

Инструментальная углеродистая сталь

Данный класс в машиностроении используется как материал для производства режущего инструмента с минимальным габаритным размером не более 13 мм. Причина этого ограничения кроется в их ограниченной прокаливаемости. Более крупные габаритные размеры возможны только если большая часть режущей кромки находится на поверхности (короткие свёрла, зенкера и прочее).

Для большинства режущего инструмента – зенковки, ножовки и фрезы – применяются стали У13, У11 и У10. В случае если стальной сплав работает в условиях сильных ударных воздействий, рекомендуется использовать марки типа У8 и У7. Они обладают большим коэффициентом ударной вязкости и, соответственно, способны выдержать большие динамические нагрузки.

Преимуществом инструментальных сталей приведенного класса является низкая цена, приемлемая податливость резанию в отожжённом состоянии и умеренная твердость. Для повышения их механических свойств применяют разного рода термообработку. Прежде всего, это закалка в соляном растворе или воде при 820 ºС плюс низкий отпуск, главное назначение которого – снятие внутренних напряжений.

Главным недостатком углеродистой инструментальной стали — это узкий диапазон температур закаливания, что усиливает внутренние деформации стали при ее термообработке. По этой причине использование данных сплавов ограничивается инструментом, работающим с низкими скоростями резания и температурами нагрева до 220 ºС.

Легированная инструментальная сталь

По сравнению с вышеописанной легированная обладает большей толщиной прокаливаемого слоя и меньшей склонностью к перегреву, что позволяет существенно снизить риск образования трещин во время термообработки инструмента. Благодаря этому минимальный габаритный размер инструмента увеличивается с 12 до 40 мм.

Низколегированные стали марок типа 11Х и 13Х рекомендуются для изготовления метчиков, ножей и напильников толщиной 1-15 мм. Особенно если указанный инструмент при этом имеет большую длину.

Стали 9ХС и ХВГС обладают повышенной красностойкостью с критической температурой 250 ºС. Они используются для сверл, плашек, гребенок и прочего инструмента диаметром до 80 мм. Недостатком их является небольшая хрупкость в отожжённом состоянии и чувствительность к образованию трещин во время шлифовки.

Также легированная инструментальная сталь отлично зарекомендовала себя в изготовлении разного рода измерительного инструмента – штангенциркули, линейки, скобы и прочее – за счет низкого значения коэффициента теплового расширения. Наиболее подходящими из них послужили стали типа Х и ХГ.

Быстрорежущая инструментальная сталь

Быстрорежущих инструментальных сталей от всех выше представленных видов инструментальных стальных сплавов отличает более высокая красностойкость. Данные сплавы не изменяют своих механических характеристик при температурном режиме до 650 ºС. Как результат, скорость резания увеличивается в 5 раза, а долговечность инструментария в 32 раз.

Этого стало возможным благодаря включению в их химический состав вольфрама или его аналога молибдена. Также на теплостойкость положительно влияет добавление в сталь таких металлов как кобальт, ванадий и хром. Наиболее востребованными марками в машино- и станкостроении являются Р18, Р12, Р6М4 и Р10К5Ф5. Из данной группы инструментальных сталей стоит отметить Р12, т.к. она обладает лучшей технологичностью: более податлива обработке давлением.

Термическая обработка данных стальных сплавов включает в себя закалку при 1250 ºС и многократный низкий отпуск при 350 ºС. Превышение указанных температур крайне нежелательно, т.к. это приводит к резкому снижению механических характеристик, в частности образования хрупкости. Иногда для улучшения коррозионностойких свойств быстрорезы дополнительно обрабатываются паром.

Штампованная сталь

Штампованная инструментальная сталь используется в производстве матриц и пуансонов штампов. Как было сказано ранее, она подразделяется на сталь холодного и горячего деформирования.

Инструментальная сталь холодной деформации работают при температуре 250-300 ºС. Сюда относят Х12М и Х12Ф1, в основе которых лежит фазовая структура ледибурит. Их отличие — это высокое значение прокаливаемости, красностойкости и твердости (64 HRC). Из них изготовляют массивные штампы сложной формы, ролики для накатывания резьбы и т.д.

Штампованные стали горячей деформации работают с более горячим металлом, температура которого может доходить до 550 ºС. Поэтому, помимо всего прочего, они должны обладать разгаростойкосью – способностью выдерживать многократные перегревы и не трескаться при этом. Наиболее востребованными марками здесь являются 5ХНМ и ХГМ.

Инструментальные стали в свое время совершили технологический прорыв в области обработки металлов. Их использование позволило повысить скорость резания почти в 5 раз. Но прогресс не стоит на месте. Сейчас они становятся все менее актуальными. Особенно на фоне новостей об усовершенствовании керамических сплавов.

Инструментальные стали

По химическому составу, степени легированности инструментальные стали разделяются на:

  • инструментальные углеродистые,
  • инструментальные легированные,
  • быстрорежущие стали.

    Физико-механические свойства этих сталей при нормальной температуре достаточно близки, различаются они теплостойкостью и прокаливаемостью при закалке.

    Разупрочнение мартенсита при нагреве во время резания закаленных углеродистых сталей происходит при температуре 200 °С. В легированных и быстрорежущих сталях разупрочнение мартенсита сдерживается наличием легирующих элементов, которые должны иметь большее, чем железо, сродство с углеродом, образовывать более теплостойкие карбиды н легко растворяться в α-железе.

    В инструментальных легированных сталях массовое содержание этих элементов недостаточно, чтобы связать весь углерод в карбиды, поэтому теплостойкость сталей этой группы лишь на 50—100 °С превышает теплостойкость инструментальных углеродистых сталей. В быстрорежущих сталях стремятся связать весь углерод в карбиды легирующих элементов, исключив при этом возможность образования карбидов железа. За счет этого разупрочение быстрорежущих сталей происходит при более высоких температурах.

    Инструментальные углеродистые стали обозначаются буквой У, за ней следует цифра, характеризующая массовое содержание углерода в стали, умноженное на 10. Так, в стали марки У 10 массовое содержание углерода составляет 1 %. Буква А в конце соответствует высококачественным сталям с пониженным массовым содержанием примесей.

    Инструментальные легированные стали обозначаются цифрой, характеризующей массовое содержание углерода в десятых долях процента (если цифра отсутствует, содержание углерода 1 %), за которой следуют буквы, соответствующие легирующим элементам (Г — марганец, X — хром, С — кремний, В — вольфрам, Ф — ванадий), и цифры, обозначающие содержание элемента в процентах. Инструментальные легированные стали глубокой прокаливаемости марок 9ХС, ХВСГ, X, 11Х, ХВГ отличаются малыми деформациями при термической обработке.

    Основные физико-механические свойства инструментальных углеродистых и легированных сталей приведены в таблицах ниже.

    Быстрорежущие стали обозначаются буквами, соответствующими карбидообразующим и легирующим элементам (Р — вольфрам, М— молибден, Ф— ванадий, А — азот, К — кобальт, Т— титан, Ц— цирконий). За буквой следует цифра, обозначающая среднее массовое содержание элемента в процентах (содержание хрома около 4% в обозначении марок не указывается). Массовое содержание азота указывается в сотых долях процента. Цифра, стоящая в начале обозначения стали, указывает содержание углерода в десятых долях процента (например, сталь марки 11РЗДМЗФ2 содержит около 1,1 % С; 3 % W; 3 % Мо и 2 % V).

    Режущие свойства быстрорежущих сталей определяются объемом основных карбидообразующих элементов— вольфрама, молибдена, ванадия и легирующих элементов — кобальта, азота. Ванадий в связи с малым массовым содержанием (до 3 %) обычно не учитывается, и режущие свойства сталей определяется, как правило, вольфрамовым эквивалентом, равным (W + 2Мо) %. В прейскурантах на быстрорежущие стали выделяют три группы сталей: стали 1-й группы с вольфрамовым эквивалентом до 16 % без кобальта, стали 2-й группы—до 18 % и содержанием кобальта около 5 %, стали 3-й группы — до 20 % и содержанием кобальта 5—10 %. Соответственно различаются и режущие свойства этих групп сталей. Кроме стандартных, применяются и специальные быстрорежущие стали, содержащие, например, карбонитриды титана. Однако высокая твердость заготовок этих сталей, сложность механической обработки не способствуют их широкому распространению. При обработке труднообрабатываемых материалов находят применение порошковые быстрорежущие стали Р6М5-П и Р6М5К5-П. Высокие режущие свойства этих сталей определяются особой мелкозернистой структурой, способствующей повышению прочности, уменьшению радиуса скругления режущей кромки, улучшенной обрабатываемости резанием, особенно шлифованием.

    Физико-механические и технологические свойства быстрорежущих сталей приведены в таблицах ниже.

    Основные физико-механические свойства наиболее распространенных углеродистых и легированных инструментальных сталей

    Марка сталиФизико-механические свойстваПроцент карбидной фазыТепло-стойкость,
    °С
    Область применения
    Плотность
    ρ, г/см 3
    Твердость
    HB
    После отжигаПосле закалки и отпуска
    Твердость
    HB
    σв, МПаσн, МПаУдарная вязкость
    aн·10 5 ,
    Дж/м 2
    Твердость
    HRСэ
    У7, У7А7,83≤285≤1876302000-21003,862-6410-12200-220Зубила, стаместки, кувалды, пилы, отвертки, керны
    У8, У8А7,833ТвердостьПосле закалкиТемпература °СТепло-стойкость,
    °С
    После отжига
    HB
    После закалки и отпуска
    HRCэ
    σн, МПаУдарная вязкость
    apan>н·10 5 ,
    Дж/м 2
    ЗакалкаОтпуск
    Р188,75255632900-310031270560620
    Р128,39255633000-32003,81250560620
    Р98,325563335021230560620
    Р6М58,15255643300-34004,81220550620
    11Р3АМ3Ф27,9255632900-31001200550620
    Р6М5Ф38,15269653300-34004,81220550630
    Р12Ф38,39269643000-31002,71250560630
    Р18М5Ф28,75285642600-310021280570640
    Р9К58,252696425000,71230570630
    Р6М5К58,152696530002,751230550630
    Р9М4К88,32856525002,61230550630
    Р2АМ9К57,8285651200540630

    Технологические свойства и области применения быстрорежущих сталей

    Стали для режущего инструмента

    Классификация инструментальных сталей

    Инструментальные стали и сплавы

    К инструментальным относится большая группа сталей и сплавов, используемых для обработки материалов резанием и дав­лением и обладающих после термической обработки вы­сокой твердостью, прочностью и износостойкостью. Ча­ще всего инструментальные стали подразделяют на не­теплостойкие, полутеплостойкие и теплостойкие (табл. 11).

    В зависимости от их назначения стали делят на (табл. 12): стали для режущих инструментов, штамповые стали для холодного и горячего деформирования и стали для точных инструментов.

    Инструментальные стали получают либо обычным ме­таллургическим переделом, ли­бо методом порошковой ме­таллургии.

    К числу основных свойств инструментальных сталей (по­сле окончательной термической обработки) относят механиче­ские, тепловые, некоторые фи­зические и химические.

    Зада­чей металловедов является обеспечение оптимального со­четания свойств сталей для конкретных условий службы. Повышенные требования предъ­являют к износостойкости, со­противлению пластической де­формации, усталостному раз­рушению, сопротивлению удар­ным нагрузкам, к теплостойкости и разгаростойкости. Ва­жнейшим свойством является твердость. Инструменты с низкой твердостью под действием возникающих в про­цессе работы напряжений, быстро теряют форму, разме­ры и работоспособность.

    С увеличением твердости возрастает износостойкость и предел выносливости (рис. 15 и 16). Уменьшается также налипание металла на инструмент и улучшается чистота обрабатываемой по­верхности. При разных термических обработках твер­дость инструментальных сталей изменяется в широких пределах. Ее максимальные значения у некоторых инструментальных сталей (быстрорежущих) достигают 68…70 HRC.

    Твердость нетеплостойких и некоторых по­лутеплостойких сталей определяется главным образом содержанием углерода в мартенсите и с повышением его концентрации увеличивается. В теплостойких сталях твердость определяется в большой степени дисперсно­стью карбидов и интерметаллидов.

    Такие факторы, как величина исходного зерна и распределение первичных карбидов по размерам, на твердость не влияют вообще. Однако величина зерна оказывает значительное влияние на прочность и вязкость стали.

    Химический состав инструментальных сталей

    СтальCSiCrWMoVДругие элементы
    Нетеплостойкие стали
    У10 У12 У13 7Х3 6ХС ХВГ0,95… 1,05 1,15… 1,25 1,25… 1,35 0,65… 0,75 0,6…0,7 0,90… 1,050,15… 0,3 0,15… 0,3 0,15… 0,3 0,15… 0,35 0,6… 1,0 0,15… 0,350,15 0,15 0,15 3,2… 3,8 1,0… 1,3 0,9… 1,2– – – – – 1,2… 1,6– – – – – –– – – – – –0,15…0,3 Mn 0,15…0,3 Mn 0,15…0,3 Mn 0,15…0,4 Mn 0,15…0,4 Mn 0,8…1,1 Mn
    Полутеплостойкие стали
    Х12ВМ 6ХВ2С 9Х18 Х18МФ 5ХГМ 20ХНМ2,0…2,2 0,55… 0,65 0,9…1,0 1,17… 1,25 0,50… 0,60 0,20,20… 0,40 0,5…0,8 0,5…0,9 0,5…0,9 – –11,0… 12,5 1,0…1,3 17,0… 19,0 17,5… 19,0 0,6…0,9 0,5…0,80,5… 0,8 2,2… 2,7 – – – –0,6… 0,9 – – 0,5… 0,8 0,15… 0,3 0,15… 0,30,15…0,30 – – 0,1… 0,2 – –– 0,15…0,4 Mn – – 1,2…1,6 Mn 1,4…1,8 Ni 0,5…0,8 Mn
    Теплостойкие стали (быстрорежущие)
    Р9 Р18 Р6М5 Р8М3 4Х2В5МФ 4Х5В2ФС Р12Ф4К5 Р6М5К50,85… 0,95 0,70… 0,80 0,80… 0,85 0,80… 0,90 0,3…0,4 0,35… 0,45 1,25… 1,40 0,80… 0,88– – – – – 0,8…1,1 – –3,8…4,4 3,8…4,4 3,8…4,4 3,6…4,0 2,2…3,0 4,5…5,5 3,5…4,0 3,8…4,38,5… 10,0 17,0… 18,5 5,5… 6,5 7,6… 8,4 4,5… 5,5 2,4… 2,6 12,5… 14,0 6,0… 7,0До 1,0 До 1,0 5,0… 5,5 3,0… 3,5 – – до 1,0 4,8… 5,82,0… 2,6 1,0… 1,4 1,7… 2,1 1,6… 1,9 0,2… 0,5 0,8… 1,2 3,2… 3,8 1,7… 2,2– – – – – 0,15…0,5 Mn 5,0…6,0 Со 4,8…5,3 Со

    Режимы термических обработок инструментальных сталей

    СтальTзак, 0 СTотп, 0 СТвердость HRCНазначение инструмента
    Стали для металлорежущих инструментов
    Р9 Р181220…1240 1270…1290550…570 550…57063…65 63…65Резцы, резцовые головки, фрезы, свер­ла, метчики, плашки, ножовочные полотна и др.­
    Р12ФЗ1235…1250550…57064,5…66То же
    Р6М51200…1220555…56563…65» »
    Р8МЗ1230…1245560…57060…61Напильники для обработки твердых металлов
    9Х181050…1075220…25057…60Ножовки для пищевой промышленности ­
    Х18МФ1050…1075220…25058…60То же
    6ХС900…920180…20054…58Ножи для резки табака и кожи
    Стали для измерительных инструментов
    9ХС840…860140…18063…64Измерительные плитки
    ХВГ830…850140…17063…64То же
    20Х790…810150…18061…63Шаблоны, линейки, лекала
    Штамповые стали для холодного деформирования
    У10810…825180…20057…59Вытяжные штампы
    У12810…835180…20057…59То же
    Х12ВМ1080…1100150…18062…63Вырубные штампы
    7ХГ2ВМ870…890325…35052…54Для пресс-форм полимерных материалов, для вырубных и отрезных штампов
    Штамповые стали для горячего деформирования
    5ХГМ820…860500…54040…46Для молотовых штампов
    4Х2В5МФ1050…1080600…65048…50Штампы для деформирования легированных сталей ­
    4Х5В2ФС1030…1060580…62048…50То же
    20ХНМ820…840220…23057…58Для пресс-форм полимерных материалов

    Повышение твердости может приводить и к повышению стойкости инструмента связь между твердостью и прочностью, наблю­дающаяся обычно в конструкционных сталях, в инстру­ментальных может наблюдаться лишь при низких зна­чениях этих свойств.

    Рис. 15. Удельный износ (по массе) быстрорежущих сталей в зависимости от твердости (резание стали 45 со скоростью 20…25 м/мин, сечение стружки 0,2х0,2 мм)

    Рис. 16. Механические свойства инструментальных ста­лей

    в зависимости от температуры отпуска

    Для инструментов с повышенными требованиями к вязкости высокую твердость создают обычно лишь в поверхностных слоях, т. е. в рабочей кромке инструмента, а в его сердцевине обеспечивают высокую вязкость, что является выгодным, так как удар­ные нагрузки передаются на всю площадь сечения инст­румента.

    Очень важным свойством для инструментальных ста­лей является сопротивление хрупкому разрушению, на которое влияют не только содержание углерода в мар­тенсите и количество остаточного аустенита, но также величина зерна, структура границ зерен, дисперсность и распределение карбидов. С увеличением размеров зер­на и усилением неоднородности в распределении карби­дов прочность инструментальных сталей снижается.

    Для определения прочности инструментальных ста­лей применяют обычно испытания на изгиб и реже на кручение. Испытания на изгиб создают напряженное со­стояние, аналогичное возникающему при работе инст­румента, и более точно, чем испытания на растяжение и сжатие, отражают влияние структуры (следовательно, состава и термической обработки) на свойства.

    Сопротивление усталостному разрушению важно для инструментальных сталей, используемых для штампового инструмента, работающего при знакопеременных на­грузках.

    Вязкость характеризует сопротивление образо­ванию трещин и их распространению под действием ударных нагрузок. При повышении вязкости возрастает износостойкость рабочей кромки. В сталях высокой твердости для повышения вязкости применяют легиро­вание элементами, измельчающими зерно.

    Под теплостойкостью понимают способность стали сохранять структуру и свойства, необходимые для ра­боты инструмента при нагреве кромки в процессе экс­плуатации. Повышение теплостойкости достигается пу­тем комплексного легирования, обеспечивающего боль­шее количество упрочняющих фаз (карбидов и интерметаллидов). Так, например, легирование кобаль­том быстрорежущей стали приводит к повышению ее теплостойкости с 610…615 °С до 640…650 °С, что позволяет повысить скорости резания и стойкость режущих инструментов. Такое легирование приводит одновременно и повышению ударной вязкости. Теплостойкость оп­ределяется по температуре нагрева, при которой начина­ет быстро развиваться необратимое изменение структу­ры, приводящее к изменению свойств и унижению стойкости инструмента. Определяют теплостойкость пу­тем измерений холодной и горячей твердости.

    Разгаростойкость (сопротивление термической уста­лости) определяется сопротивлением стали образованию поверхностных трещин под нагрузкой при многократном нагреве и охлаждении. Общепринятого метода испытаний разгаростойкости нет. Чаще всего испытывают цилиндриче­ские образцы, подвергнутые многократному нагреву и ох­лаждению. Разгаростойкость ухудшается при повышении твердости, если это сопровож­дается снижением вязкости. Более высокую разгаростойкость имеют стали с меньшим содержанием углерода.

    Из физических свойств ин­струментальных сталей наибо­лее важное значение имеют тепловое расширение и устой­чивость против прилипания об­рабатываемого металла к ин­струменту. Из химических свойств главное— окалиностойкость.

    Износостойкость сталей зависит от структуры инст­рументальной стали, свойств обрабатываемого материа­ла и условий обработки, а также от прокаливаемости стали, определяющей распределение твердости по сече­нию инструмента (рис. 17). При одинаковых условиях охлаждения прокаливаемость зависит от состава аустенита. Прокаливаемость хорошая у высоколегированных теплостойких сталей и полутеплостойких, у менее леги­рованных и углеродистых сталей (нетеплостойких) она гораздо ниже.

    Стали этой группы делятся на углеродистые, низколеги­рованные и высоколегированные (быстрорежущие).

    Углеродистые стали после закалки имеют высокую твердость (60…63 HRC), которая сохраняется при низ­ком отпуске (150…180°С). Но твердость углеродистых сталей при нагреве выше 190…200 °С резко падает, по­этому их используют при малой скорости резания не очень твердых материалов. Применяют углеродистые ста­ли для инструментов небольших размеров (зенкеры, свер­ла, пилы для ручных ножовок и др.).

    Углеродистые стали значительно уступают тепло­стойким в износостойкости, и их использование резко сокращается, несмотря на преимущества, заключающие­ся в большой вязкости, хорошей обрабатываемости и низкой стоимости.

    Рис. 17. Прокаливаемость углеродистой инструментальной стали У12

    Рис. 18. Твердость сталей Р18, Р12Ф3, Р14Ф4 и прочность

    стали Р12Ф3 при нагреве

    По сравнению с углеродистыми легированные стали (11ХФ, 13Х, 9ХФ и др.) лучше прокаливаются, и это предотвращает деформацию инструмента и его коробле­ние при термической обработке. Инструменты из этих сталей рекомендуется закаливать в масло или проводить ступенчатую закалку с промежуточным охлаждением в горячей среде). Стали 9ХС, ХВГС имеют повышенную теплостойкость (до 250…260 °С), их применяют для ин­струментов большого сечения (ручных сверл, разверток и т. п.). Но в отожженном состоянии они имеют повышен­ную твердость и их обработка резанием и давлением затруднена.

    Быстрорежущие стали применяют для изготовления большинства инструментов. От других сталей их отлича­ет, прежде всего, высокая теплостойкость, поэтому их можно использовать при резании с большой скоростью. Применение быстрорежущих сталей вместо углероди­стых позволяет повысить скорость резания в 2…4 раза, а при их интерметаллидном упрочнении – в 5…6 раз. При этом стойкость инструмента возрастает в 10…40 раз.

    Высокая теплостойкость быстрорежущих сталей обу­словлена специальным легированием (W, Мо, V, Со). Наиболее используемые марки – Р18, Р12, Р6М5, Р6М3. Их применяют для изготовления всевозможных резцов, предназначенных для резания труднообрабатываемых материалов.

    Для инструментов, от которых требуется более длительная стойкость, применяют стали с твердостью 66…68 HRC (Р6К5, Р9К10, Р18К5Ф2 и др.).

    Сочетание высокой твердости с высокой теплостой­костью обеспечивается закалкой с высоких температур (1200…1300 °С) и последующим отпуском при 550…560 °С а для некоторых сталей и при 600…650 °С.

    При­чем отпуск рекомендуется двух- и трехкратный.

    Высокая твердость и теплостойкость этих ста­лей обусловлена выделе­нием карбидов типа МС, М23С6, М6С, которые при­сутствуют в количестве до 25…30 % (например, в стали Р18), либо интерметаллидов типа Co7W6.

    Как правило, при закалке быстрорежущих сталей полного превращения не наблюдается, в них сохра­няется остаточный аустенит, снижающий режу­щие свойства. Поэтому иногда для таких сталей применяют обработку хо­лодом.

    Термомеханическую обработку для быстрорежущих сталей применяют редко, так как выигрыш прочности не­значителен. Для улучшения поверхностного слоя инстру­ментов применяют низкотемпературное цианирование, азотирование, нитроцементацию с последующим оксиди­рованием и другие методы. В результате на поверхности инструмента создается слой, характеризующийся повы­шенной твердостью, износостойкостью и теплостойкостью.

    Следует отметить, что большинство марок быстроре­жущих сталей содержит дорогой и дефицитный воль­фрам. Поэтому в настоящее время проводится интенсив­ная разработка новых безвольфрамовых марок быстро­режущих сталей.

    Не нашли то, что искали? Воспользуйтесь поиском:

    Читайте также:  Натуральный камень в строительстве
  • Ссылка на основную публикацию