Основные виды изоляционных материалов

Изоляционные материалы

Изоляционные материалы

Изоляционные материалы. Виды

На сегодняшний день изоляционные материалы находят широкое применение в строительстве и ремонте. Основные виды изоляционных материалов: Теплоизоляция — Звукоизоляция — Гидроизоляция — Ветроизоляция — Паро- и воздухоизоляция

Теплоизоляционные материалы — строительные материалы, применяемые для телоизоляции строительных конструкций жилых, производственных зданий, поверхностей оборудования и промышленных агрегатов (холодильных камер, печей, трубопроводов и т.д.), средств транспорта. Эти материалы обладают малой теплопроводностью и позволяют снизить потери теплоты, сохранить необходимый температурный режим, снизить расход топлива, а в строительстве — уменьшить толщину стен, кровли, тем самым уменьшить расход строительных материалов и вес конструкции. Основные виды теплоизоляционных материалов: — Жесткие (плиты, блоки, кирпич, скорлупы, сегменты и др.) — Сыпучие (зернистые, порошкообразные) — Волокнистые

По виду основного сырья различают:

  • Органические — получаемые при переработке отходов деревообработки и неделовой древесины; а также газонаполненные пластмассы (пенопласты, поропласты, сотопласты и др.). Обладают низкой огнестойкостью, применяются при температуре не выше 150 °С.
  • Неорганические — минераловата и минераловатные плиты, легкие и ячеистые бетоны (газо- и пенобетон), пеностекло, стеклянное волокно и др.
  • Смешанные теплоизоляционные материалы — (фибролит, арболит и др.) — получаются из смеси минерального вяжущего вещества и органического наполнителя (древесные стружки, опилки), обладают более высокой огнестойкостью по сравнению с органическими материалами.

Звукоизоляционные (акустические) материалы — используются с целью ослабления звука при его проникновении через ограждения зданий, снижения уровня шума, проникающего в помещение из вне. Выделяют два вида звукоизоляционных материалов: звукопоглощающие материалы и звукоизоляционные прокладочные материалы.

Применяются в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов. Они имеют пористую структуру (большое число открытых, сообщающихся между собой пор), что и определяет их звукопоглощающую способность.

Звукоизоляционные прокладочные материалы

Применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование.

Виды звукоизоляционных прокладочных материалов:

материалы из волокон органического и минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны) материалы из эластичных газонаполненных пластмасс (пенополиуретан, пенополивинилхлорид, латексы синтетических каучуков).

Гидроизоляционные материалы — материалы, используемые для защиты строительных конструкций, зданий и сооружений от вредного воздействия воды, конденсата и химически агрессивных жидкостей (кислот, щелочей и пр.). Существует достаточно обширная классификация гидроизоляционных материалов.

Их подразделяют по назначению на:

антифильтрационные, антикоррозионные и герметизирующие,

По материалу на:

на асфальтовые (асфальтовые мастики,растворы, бетоны, битумные лаки и эмали, эмульсии, пасты, холодные и горячие асфальты и т.д.), минеральные (цементные и силикатные краски, гидрофобные засыпки,гидробетонные замки, гидратон), пластмассовые (для окрасочной, штукатурной, оклеечной гидроизоляции — эпоксидные поливиниловые краски, лаки, полимеррастворы и бетоны, полиэтиленовая пленка и др.) и металлические (листы из латуни, меди, свинца, обычной и нержавеющей стали, алюминиевая и медная фольга и др.).

Кроме того, все гидроизоляционные материалы подразделяют на две группы: традиционные (приклеиваемые и обмазочные — на основе полимеров, полимерных смол и т. д.) и материалы проникающего действия (на основе минерального сырья).

Кроме того, к основным видам изоляции также относятся:

  • Пароизоляция — улучшает теплоизолирующие свойства утеплителя, защищает его и строительные конструкции от насыщения парами воды изнутри помещения в зданиях всех типов.
  • Ветроизоляция — для защиты утеплителя и элементов кровли от конденсата и выветривания.
  • Универсальная гидро-пароизоляция — для защиты строительных конструкций от проникновения водяных паров, конденсата и влаги.

Виды изоляционных материалов

На сегодняшний день изоляционные материалы находят широкое применение в строительстве и ремонте. Чтобы разобраться во всем их многообразии, прежде всего определим основные виды изоляционных материалов. – Теплоизоляция – Звукоизоляция – Гидроизоляция – Ветроизоляция – Паро- и воздухоизоляция

Теплоизоляционные материалы — строительные материалы, применяемые для телоизоляции строительных конструкций жилых, производственных зданий, поверхностей оборудования и промышленных агрегатов (холодильных камер, печей, трубопроводов и т.д.), средств транспорта. Эти материалы обладают малой теплопроводностью и позволяют снизить потери теплоты, сохранить необходимый температурный режим, снизить расход топлива, а в строительстве — уменьшить толщину стен, кровли, тем самым уменьшить расход строительных материалов и вес конструкции. Теплоизоляционные материалы характеризуются низкой теплопроводностью [коэффициент теплопроводности не более 0,2 вт/(м ? К)], высокой пористостью (70-98%), незначительными объёмной массой и прочностью (предел прочности при сжатии 0,05-2,5 Мн/м2).

Основные виды теплоизоляционных материалов: – Жесткие (плиты, блоки, кирпич, скорлупы, сегменты и др.) – Сыпучие (зернистые, порошкообразные) – Волокнистые

По виду основного сырья различают:

– Органические – получаемые при переработке отходов деревообработки и неделовой древесины (древесноволокнистые плиты и древесностружечные плиты), торфа (торфоплиты), с/х отходов (камыши, соломит), имеющие низкую био- и водостойкость; а также газонаполненные пластмассы (пенопласты, поропласты, сотопласты и др.). Обладают низкой огнестойкостью, применяются при температуре не выше 150 °С.

– Неорганические — минераловата и минераловатные плиты, легкие и ячеистые бетоны (газо- и пенобетон), пеностекло, стеклянное волокно и др.

– Смешанные теплоизоляционные материалы — (фибролит, арболит и др.) – получаются из смеси минерального вяжущего вещества и органического наполнителя (древесные стружки, опилки), обладают более высокой огнестойкостью по сравнению с органическими материалами.

Неорганические материалы, используемые в качестве монтажных, изготовляют на основе асбеста (асбестовые картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита). Для изоляции промышленного оборудования и установок, работающих при температурах выше 1000 °С (например, металлургических, нагревательных и др. печей, топок, котлов и т. д.), применяют так называемые легковесные огнеупоры, изготовляемые из огнеупорных глин или высокоогнеупорных окислов в виде штучных изделий (кирпичей, блоков различного профиля); перспективно также использование волокнистых теплоизоляционных материалов из огнеупорных волокон и минеральных вяжущих веществ (коэффициент их теплопроводности при высоких температурах в 1,5-2 раза ниже, чем у традиционных, имеющих ячеистое строение).

Звукоизоляционные (акустические) материалы — используются с целью ослабления звука при его проникновении через ограждения зданий, снижения уровня шума, проникающего в помещение из вне. Выделяют два вида звукоизоляционных материалов: звукопоглощающие материалы и звукоизоляционные прокладочные материалы.

Применяются в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Они имеют пористую структуру (большое число открытых, сообщающихся между собой пор), что и определяет их звукопоглощающую способность.

Различают 3 вида звукопоглощающих материалов:

Мягкие – на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3% по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м3, которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250-1000 гц) от 0,7 до 0,85.

Полужесткие – минераловатные или стекловолокнистые плиты размером (мм) 500 ? 500 ?20 с объёмной массой от 80 до 130 кг/м3 при содержании синтетического связующего от 10 до 15% по массе, а также древесноволокнистые плиты с объёмной массой 180-300 кг/м3. Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65-0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

Твердые – в виде плит “Акминит” и “Акмигран” (СССР), “Травертон” (США) и др. размером (мм)300 ? 300 ? 20 на основе гранулированной или суспензированной минеральной ваты и коллоидного связующего (крахмальный клейстер, раствор карбоксиметилцеллюлозы). Поверхность плит окрашена и имеет различную фактуру (трещиноватую, рифлёную, бороздчатую). Объёмная масса 300-400 кг/м3, коэффициент звукопоглощения на средних частотах 0,6-0,7.

Звукоизоляционные прокладочные материалы

Применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м2 (12 кгс/см2), при нагрузке 20 Мн/м2 (200 кгс/м2).

Прочный скелет материала и поры с воздухом определяют его звукоизоляционные свойства, так как снижают структурный и ударный шум.

Виды звукоизоляционных прокладочных материалов:

материалы из волокон органического и минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны) материалы из эластичных газонаполненных пластмасс (пенополиуретан, пенополивинилхлорид, латексы синтетических каучуков).

Гидроизоляционные материалы — материалы, используемые для защиты строительных конструкций, зданий и сооружений от вредного воздействия воды, конденсата и химически агрессивных жидкостей (кислот, щелочей и пр.). Существует достаточно обширная классификация гидроизоляционных материалов.

Их подразделяют по назначению на:

антифильтрационные, антикоррозионные и герметизирующие,

По материалу на:

на асфальтовые (асфальтовые мастики,растворы, бетоны, битумные лаки и эмали, эмульсии, пасты, холодные и горячие асфальты и т.д.), минеральные (цементные и силикатные краски, гидрофобные засыпки,гидробетонные замки, гидратон), пластмассовые (для окрасочной, штукатурной, оклеечной гидроизоляции — эпоксидные поливиниловые краски, лаки, полимеррастворы и бетоны, полиэтиленовая пленка и др.) и металлические (листы из латуни, меди, свинца, обычной и нержавеющей стали, алюминиевая и медная фольга и др.).

Кроме того, все гидроизоляционные материалы подразделяют на две группы: традиционные (приклеиваемые и обмазочные – на основе полимеров, полимерных смол и т. д.) и материалы проникающего действия (на основе минерального сырья).

Одним из недостатков использования традиционных материалов является возможность их отслоения от защищаемой поверхности и последующая потеря ими защитных свойств. Кроме того, работа с данными материалами требует предварительной сушки поверхности и четкого соблюдения технологических параметров.

Наиболее перспективными в этом направлении являются материалы проникающего действия (из цемента, кварцевого песка и активных химических добавок), применение которых в значительной степени повышает эксплуатационные характеристики бетона.

Гидроизоляционный эффект достигается за счет заполнения пор и микропустот бетона водо-нерастворимыми соединениями, образующимися в результате реакции активных химических компонентов с цементным камнем в присутствии воды. Проникающая гидроизоляция становится составной частью бетона, образуя единую с ним, прочную и долговечную структуру, сохраняя при этом его паропроницаемость.

Кроме того, к основным видам изоляции также относятся:

– Пароизоляция – улучшает теплоизолирующие свойства утеплителя, защищает его и строительные конструкции от насыщения парами воды изнутри помещения в зданиях всех типов.

– Ветроизоляция -для защиты утеплителя и элементов кровли от конденсата и выветривания.

– Универсальная гидро-пароизоляция – для защиты строительных конструкций от проникновения водяных паров, конденсата и влаги.

Читайте также:  Покупка щебня для строительства



Самые популярные электроизоляционные материалы

Современная электрохимическая промышленность может похвастаться самыми разнообразными электроизоляционными материалами. Особого внимания заслуживают стекловолоконные материалы в состав которых входят синтетические смолы, поскольку данные материалы отличаются не только высокой электрической, но и значительной механической прочностью, а также нагрево- и влагостойкостью.

Природные электроизоляционные материалы, такие как слюда и асбест, искусственные собратья – электрокартон и хлопчатобумажные ленты, – делят рынок современной электроизоляции с высококачественным стекловолокном, которое входит в состав стеклолакотканей, стеклотекстолитов, стеклолент и стекломиканитов. Кроме того широко применяются синтетические пленки: мелинекс, лавсан и другие.

Именно благодаря появлению в составе электроизоляционных материалов синтетики, мощность и долговечность современного электротехнического и электронного оборудования сильно повысились, а размеры (трансформаторов, реакторов, конденсаторов, двигателей и многих других электрических агрегатов) остались прежними. Давайте же рассмотрим самые популярные из электроизоляционных материалов современности.

Электрокартон

Электрокартон марок ЭВ и ЭВТ толщиной от 0,1 до 0,3 мм предназначен для эксплуатации в воздушной среде. Для работы в масле применяется электрокартон ЭМЦ и ЭМТ толщиной от 1 до 3 мм.

Электрокартон выпускается в виде листов или рулонов. Непропитанный электрокартон уязвим для влаги, поэтому он требует сухого хранения. Тем не менее, уже при влажности в 8% картон марки ЭВ имеет диэлектрическую прочность порядка 10 кВ/мм, а для марки ЭМТ характерная диэлектрическая прочность в нормальных условиях доходит до 30 кВ/мм.

Электроизоляционная бумага

Произведенная из хвойной древесины обработанной щелочью, электроизоляционная бумага, в зависимости от толщины и состава, подразделяется на несколько типов: телефонная, кабельная и конденсаторная. Телефонная бумага марки КТ-05 имеет толщину порядка 0,05 мм. Для кабельной бумаги К-120 характерна толщина 0,12 мм, она дополнительно пропитана трансформаторным маслом, что дает высокие диэлектрические характеристики.

Конденсаторная бумага также пропитана трансформаторным маслом, однако толщина ее значительно меньше чем у двух предыдущих типов.

Фибра

Исходным материалом для фибры является бумага, которая обрабатывается раствором хлористого цинка. И хотя механически фибра непрочна, уязвима для кислот и щелочей, тем не менее она легко поддается обработке, а диэлектрическая прочность фибры доходит до 11 кВ/мм.

Фибру производят в виде стрежней, трубок или листов толщиной от 0,6 до 12 мм. Фибра находит применение в изготовлении электротехнических прокладок и каркасов катушек. Разновидностью тонкой фибры (толщиной от 0,1 до 0,5 мм) является летероид, который можно встретить в продаже в виде листов или рулонов.

Киперная лента

В качестве первого представителя семейства хлопчатобумажных лент рассмотрим киперную ленту ЛЭ. Она производится из хлопчатобумажной нити, выпускается толщиной 0,45 мм и шириной от 10 до 60 мм. Киперная лента применяется для стягивания проводов и кабелей, для обвязки обмоток трансформаторов и двигателей, также киперная лента используется при обвязке различных катушек и в других электромонтажных работах.

Тафтяная лента

Шелковая или хлопчатобумажная нить применяются при изготовлении тафтяных лент ЛЭ. Тафтяная лента может быть шириной от 10 до 50 мм. Толщина тафтяной ленты традиционно составляет 0,25 мм, что меньше чем у киперной ленты, потому и в прочности она ей уступает. Тафтяную ленту также используют в электромонтажных работах.

Батистовая лента

Более тонкая альтернатива тафтяной ленте — батистовая лента ЛЭ, изготавливаемая из хлопчатобумажной нити полотняного плетения. Она может иметь ширину от 10 до 20 мм, а толщину — от 0,12 до 0,18 мм.

Миткалевая лента

Менее прочная чем киперная лента, но прочнее чем тафтяная – толщина 0,22 мм — миткалевая. Выпускается шириной от 12 до 35 мм.

Асбест

Волокнистый природный минерал Асбест отличается высокой термостойкостью и низкой теплопроводностью. Он способен демонстрировать приемлемые для некоторых применений диэлектрические свойства при температурах эксплуатации до 400°С.

Характерная диэлектрическая прочность асбеста едва доходит до 1,2 кВ/мм, поэтому к его применению прибегают именно из-за высокой нагревостойкости, используя в качестве теплоизолятора. Если и применяют асбест для электрической изоляции, то только в низковольтных электроустановках. Выпускается асбест традиционно в виде листов или веревок.

Лакоткань и стеклоткань

Шелковая, стеклянная или хлопчатобумажная нити применяются для производства гибких стеклотканей и лакотканей различных марок, выпускаемых в виде рулонов при толщине материала от 0,1 до 0,3 мм и шириной от 700 до 1000 мм. Ткань пропитывается масляным или масляно-битумным лаком либо другим подходящим электроизоляционным составом.

Шелковая лакоткань марки ЛШСС может быть очень тонкой — до 0,04 мм. Стеклоткань ЛСК отличается нагревостойкостью до 180°С, а электрическая прочность достигает 40 кВ/мм. Стеклоткань и лакоткань традиционно применяются для межслойной изоляции катушек.

Тонкие пленочные материалы

Фторопластовая, полиэтилентерефталатная и лавсановая пленки, а также пленкоэлектрокартон (электрокартон обклеенный тонкой пленкой) отличаются высокой электрической прочностью — до 200 кВ/мм и значительной механической прочностью — при толщине пленки 0,05мм, прочность на разрыв достигает 30 кг. Нагревостойкость данных пленок выше 120°С.

Текстолит, стеклотекстолит, гетинакс

Первый представитель слоистых электроизоляционных материалов — текстолит. Его производят путем прессования пропитанной резольной смолой многослойной хлопчатобумажной ткани. Прессование осуществляется в условиях температуры 150°С. Получаемый материал отличается очень высокой механической прочностью, однако он менее влагостоек чем гетинакс.

На рынке текстолит представлен в виде трубок, цилиндров и листов. В силу того что текстолит легко поддается механической обработке, из него изготавливают каркасы катушек, диэлектрические прокладки и щиты, печатные платы и даже шестерни и подшипниковые вкладыши.

В отличие от текстолита, при производстве стеклотекстолита используют не хлопчатобумажную ткань, а стеклоткань. Электрическая прочность стеклотекстолита достигает по этой причине 20 кВ/мм, что выше чем у гетинакса и у обычного текстолита. Влагостойкость также лучше чем у текстолита и нагревостойкость выше — доходит до 225°С. Рыночная стоимость стеклотекстолита выше чем у текстолита.

Простейший представитель слоистых электроизоляционных материалов – гетинакс. По сути — пропитанная бакелитовой смолой спрессованная бумага. Выпускается гетинакс в виде листов от 0,4 до 50 мм толщиной, а также в виде стрежней различного диаметра. Его электрическая прочность достигает 25 кВ/мм. Применяется для тех же целей что и текстолит, однако с учетом факта что нагревостойкость у гетинакса ниже, и при чрезмерном нагреве он обугливается и становится проводником.

Слюда

Кристаллический природный минерал, слюда, служит превосходным сырьем для создания изоляционных материалов высокого качества. Слои минерала склеивают при помощи смолы или лака, чтобы получить мусковит или миканит. Мусковит применяют в конденсаторах, так как он обладает лучшими характеристиками.

Миканит — применяется для производства диэлектрических прокладок и обмоток электрических машин. Нагревостойкость слюдяных материалов доходит до 180° С, диэлектрическая прочность — до 20 кВ/мм. Кроме того стоит отметить отличную влагостойкость слюды. Наклеиванием слюды на ткань получают микаленту толщиной от 0,08 до 0,17 мм и шириной от 12 до 35 мм.

Слюда нынче в дефиците, поэтому даже отходы слюды идут в дело — из отходов изготавливают слюдяную бумагу, стеклослюдиниты и т. д., которые тоже используются как электроизоляционные материалы с диэлектрическими характеристиками близкими к слюде.

Фарфор и стеатит

Электротехническая керамика занимает особое место среди электроизоляционных материалов. Главные ее виды — фарфор и стеатит. Электротехнический фарфор отличается диэлектрической прочностью до 28 кВ/мм и нагревостойкостью до 170° С. Его высокая прочность и влагонепроницаемость делают фарфор идеальным материалом для изготовления изоляторов. Фарфор находит широкое применение в электротехнике, электронике, автоматике и IT-сфере.

Стеатит превосходит фарфор по диэлектрической прочности (до 50 кВ/мм). Именно поэтому стеатит используют для изготовления особо важных электротехнических узлов, где требуется нагревостойкость и особо надежная электроизоляция. Качественные ТЭНы покрывают стеатитом именно в силу его высокой нагревостойкости.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Виды и свойства изоляционных материалов

Независимо от того, какой строительный объект возводится, без материалов, которые бы защитили от шума, холода, влаги и воды, не обойтись. Изоляционные материалы также важны, как стены и перекрытия.

Основные понятия об изоляции и ее видах

Любое здание, помимо конструктивных решений, должно быть обеспечено различными видами изоляции. К основным типам изоляции относятся:

    Теплоизоляция. Данный тип обеспечивает уменьшение воздействия тепла на конструктивные элементы здания либо сооружения.

Утеплитель обычно является самым толстым слоем изоляции дома.
Пароизоляция. Материалы, которые используются для этой цели, обеспечивают защиту здания от воздействия пара и конденсата.

Кровля, отделанная пароизоляционным материалом.
Гидроизоляция. Как понятно из названия, этот тип материалов помогает обеспечить защиту конструкций от воздействия воды.

Гидроизоляция может выпускаться в рулонах…

…или жидкой форме для более равномерного нанесения.

  • Влагоизоляция. Этот тип немного схож с предыдущим. Однако такие изоляционные материалы позволяют защитить от влаги на капиллярном уровне.
  • Отражающая теплоизоляция. Это более современные изоляционные материалы, которые помогают повысить тепловое сопротивление кровли и не требует дополнительного увеличения утепляющего слоя.

    Данный тип изоляции весьма прост в укладке и очень эффективен.

  • Ветроизоляция, которая предусмотрена для защиты от конденсата и выветривания.
  • Электроизоляция. Данный вид обеспечивает электробезопасность.

Важно!Каждый вид защиты предусматривает использование различных средств. Несмотря на большое разнообразие изоляционных материалов, все же наибольшее внимания обращено на тепло-, гидро-, электро- и пароизоляцию.

Как осуществляется теплоизоляция и какие материалы используются

Любые материалы, основные свойства которых заключаются в уменьшении передачи тепла, относятся к теплоизоляционным. При их помощи сооружается защитный слой, который будет предупреждать потерю тепла. Изоляционные материалы данной категории могут быть двух видов:

  • обладающие отражающим эффектом, т.е. их свойства заключаются в снижении процентов потери тепла при помощи инфракрасного излучения;
  • материалы, полезные свойства заключаются в возможности проведения тепла.

По своему происхождению, изоляционные материалы, предотвращающие потерю тепла, делятся на три группы:

  • Органические. В основном они производятся из продуктов переработки древесины, торфа и некоторых отходов сельскохозяйственного производства.
  • Неорганические, среди которых наиболее популярными являются полимерные. К ним относятся пено-, поро-, сотопласты, мипора.
  • Комбинированный тип производятся из различных горных пород, асбеста и некоторых вяжущих веществ, созданных на базе минералов.

Какой бы материал вы не выбрали, очень важно правильно его уложить.

Неорганические теплоизоляционные материалы

Этот вид достаточно популярен у строителей. Особенно полимерные, которые отличаются достаточной легкостью, малыми показателями теплопроводности, а также достаточной прочностью при механических воздействиях. Их свойства во многом зависят от того, в каком виде и форме они выпускаются. Наиболее популярные полимерные:

  • пенополистирол;
  • пенополивинилхлорид;
  • пенополиуретан;
  • сотопласт;
  • мипора.

Пенополистирол обладает пористой основой, в которой имеются замкнутые ячейки. Они, в свою очередь, заполнены воздухом либо газом (в этом случае, наиболее часто прибегают к азоту). Основными компонентами для создания пенополистирола являются порофор и суспензионный полистирол. Первый выполняет свойства вспенивающего вещества.

Для утепления используется пенополистирол в плитах.

Полимерные материалы на основе пенополистирола выпускаются либо в формах плит, либо в форме специальных фасадных изделий. Помимо того, что их свойства имеют хорошие показатели, они также не подвержены процессу гниения, а также достаточно просто склеиваются с другими видами строительных материалов либо крепятся крепежными элементами.

Но он может быть и в такой форме.

Пенополивинилхлорид выпускается также в виде плит. Пористая база заполняется не воздухом, а газом. Имеют достаточно большой диапазон температур, при которых могут быть применены. А также, имеют устойчивость к воздействию различных кислот, щелочей, воды.

Плиты пенополивинилхлорида

Понеполиуретан, как и предыдущем случае, наполнен не воздухом, а газом. Производятся из двух основных компонентов – полиэфиров и диизоцианатов. Такие полимерные материалы могут быть смело применены при следующем диапазоне температур: от -60 градусов до +170 градусов Цельсия. Эти плиты вполне можно сверлить, скреплять, распиливать и даже обрабатывать при помощи токарных станков. Наибольшее распространение получили в качестве изоляции для трубопроводов.

Элемент плиты пенополиуретана в разрезе. Емкости, утепленные при помощи пенополиуретана.

Сотопласты позволяют предупреждать не только теплопотери, но и защищают от шума. Иначе говоря, выполняют звукоизоляцию. Они формируются посредством горячего катания гофрированных листов бумаги, ткани или другого сырья, которые предварительно должны пройти технологию пропитки специальным полимером. Чтобы улучшить свойства этого пласта, его ячейки, которые также именуются сотами, заполняются стекловатой либо пенопластом.

Сотопласт может включать различные материалы.

Мипора – достаточно легкий материал, который обеспечивает тепло-, шумоизоляцию. По своему виду он напоминает затвердевшую пену белого цвета. Основными компонентами для его создания служат полимеры, раствор сульфонафтеновой кислоты и некоторые добавки. Может выпускаться в трех видах: плитка, блоки и крошка.

Мипора в форме крошки и плит.

По своей сути, они достаточно похожи. Каждый из них имеет пористую основу, которая может быть заполнена воздухом, газом, стекловатой либо пенопластом. Разница в их области применения, а также жесткости. Напыляемая теплоизоляция https://www.youtube.com/watch?v=kWuCG7Z0VSc

Гидроизоляция и материалы для ее устройства

Каждый из нас любит, когда дома тепло и уютно. Но, если с потолка собираются капли влаги, это сигнал для замены гидроизоляции кровли. Основная функция гидроизоляции – это защита конструкций здания либо сооружения от попадания на них влаги, из-за чего они могут начать деформироваться. Таким образом, срок их эксплуатации будет снижаться. Основными материалами, которые могут быть использованы в качестве защиты от воды, являются:

    геосинтетические продукты, листовые и рулонные материалы;

Достаточно популярным изоляционным материалом является рулонный рубероид.

  • металл листовой;
  • разнообразные, достаточно популярные сейчас, жидкие смеси и составы (в частности, жидкая резина);

    Процесс нанесения жидкой резины.

  • составы, в основу которых взяты минеральные компоненты, имеющие вяжущие свойства;
  • сухие строительные смеси, либо другие материалы, которые обладают проникающим свойством.

    Гидроизоляция с использованием сухих строительных смесей.

    В зависимости от того, какова структура материала, и каковы его свойства, происходит деление на:

    • антикоррозионные;
    • антифильтрационные;
    • для окраски (лакокрасочная продукция на основе битума);
    • в виде штукатурки;
    • рулонные материалы оклеечного типа;
    • литые материалы (например, мастика или продукция на основе асфальта);
    • засыпной тип – сыпучая продукция;
    • пропитка (различные продукты, которые имеют вяжущие свойства, в частности полимерные лаки либо битум);
    • монтируемая гидроизоляция из пластмассы либо металлических листов;
    • в виде инъекций;
    • в виде напыления.

    Важно!Наиболее востребованными в последнее время являются материалы, которые обладают проникающим действием. Благодаря своей структуре, они проникают в пустоты и ячейки, заполняют их и препятствуют попаданию в них воды, которая может привести к коррозии и другим неприятным процессам.

    Виды гидроизоляции https://www.youtube.com/watch?v=3DbkAgXxYFs

    Электрическая изоляция

    Сегодня трудно найти объект, где будет отсутствовать электрический ток. Однако при неправильном обращении и отсутствии защиты, он может быть опасен. Данный вид изоляции позволяет защитить конструкцию от прохождения через нее электрического тока. Электрические изоляционные материалы обеспечивают не только защиту элементов зданий и сооружений, электрических приборов и установок, но и человека. Для того, чтобы обеспечить надежную защиту используются материалы, обладающие диэлектрическими свойствами. К ним относятся различные полимеры, керамика, слюда, стекло.

    Диэлектрические материалы также могут выпускаться в рулонах.

    Изоляция – вопрос не менее важный, чем возведение конструктивных элементов самого здания. Без надежной защиты от влияния жидкости, тепла и влаги, срок эксплуатации может значительно снизится и необходимость в ремонтных работах наступит значительно раньше. Изоляция предназначена для уменьшения теплопотерь, влияния влаги, конденсата и воды на кровлю и другие строительные конструкции, а также для безопасности, если используются электрические сети.

    Ксения Скворцова. Главный редактор. Автор.
    Планирование и распределение обязанностей в команде контент-производства, работа с текстами.
    Образование: Харьковская Государственная Академия Культуры, специальность «Культуролог. Преподаватель истории и теории культуры». Опыт работы в копирайтинге: С 2010 года по настоящий момент. Редактор: с 2016 года.

    Основные виды изоляционных материалов

    Сегодня нельзя построить дом без применения специальных средств защиты. Эти средства позволяют защитить жилье от негативных воздействий внешней среды.

    Одним из распространенных материалов для гидроизоляции является рулонный рубероид, он прекрасно справляется с поставленной целью.

    Рынок предлагает различные виды изоляционных материалов, отличающиеся функциональными характеристиками:

    • теплоизоляционные;
    • звукоизоляционные;
    • гидроизоляционные;
    • ветроизоляционные;
    • паро- и водоизоляцинные.

    Материалы для теплоизоляции

    Теплоизоляция призвана уменьшить теплопотери.

    Материалы, используемые для теплоизоляции строящихся зданий, выпускаются разных видов. По консистенции они бывают:

    Схема теплоизоляции кирпичной стены.

    • жесткие или твердые;
    • в виде порошка или зернистого вида;
    • волокнистые.

    Эта категория изоляционных материалов позволяет уменьшить потери тепла до минимальных значений. Применение этих защитных средств позволяет уменьшать толщину стены, за счет чего снижается вес здания и уменьшается количество расходуемых материалов на строительство.

    Основные функциональные характеристики, которыми обладают изоляционные материалы данного вида:

    • низкая теплопроводность;
    • плотность;
    • большая пористость, за счет которой снижается прочность материала.

    Твердый утеплитель выпускается блоками и плитами, сыпучий – в виде порошка или зерна, волокнистые, соответственно, в виде волокон.

    По составу утеплители разделяются на 3 группы:

    1. Органические утеплители, получаемые из отходов сельскохозяйственного сырья, древесины, торфа и газонаполненные пластмассы (пенопласт, поропласт, сотопласт). Недостатком этой группы материалов можно назвать их низкую огнестойкость, их применяют в температурных режимах ниже 150°С.
    2. Материалы неорганической природы представлены на строительном рынке минеральной ватой и минераловатными плитами, газобетонными средствами и пенобетоном, стекловолокном и пеностеклом.
    3. Утеплители смешанного состава фибролит и арболит состоят из минерального вяжущего вещества и органического наполнителя. Смешанный состав средств защиты позволяет достигать более высокого уровня огнестойкости.

    Материал для звукоизоляции

    Применение звукоизоляционных уплотнителей при строительстве зданий разного назначения, преследует цель снизить уровень проникающего шума и посторонних звуков.

    Изоляционные материалы данного вида делятся на 2 группы:

    • звукопоглощающие или акустические;
    • прокладочные.

    Акустические облицовочные средства используют при строительстве промышленных предприятий, монтаже вентиляционных установок и промышленных кондиционеров для обеспечения нормативного уровня шума. А в общественных зданиях они создают оптимальный уровень слышимости и улучшают акустику в больших помещениях, где размещается множество слушателей: зрительные залы кинотеатров и филармоний, театров, звукозаписывающих студий. Звукоизоляционные свойства защитных средств зависят от пористости уплотнителя.

    В качестве изоляционных материалов, поглощающих шум, могут применяться мягкие, полужесткие и твердые облицовки.

    Для получения мягкого вида облицовки применяется минеральная вата и стекловолокно. Мягкая звукоизоляционная облицовка выпускается в виде матов и рулонов. Объемная масса этого вида материалов составляет около 70 кг/м³. С одной стороны они имеют листовой перфорированный экран. Материалом для него служит алюминий, жесткий поливинилхлорид или асбестоцемент.

    Полужесткая поглощающая звукоизоляционная облицовка изготавливается в виде минераловатных и стекловолоконных плит. Размер одной плиты составляет 50×50×2 см, объемная масса ее 80-130 кг/м³. Используются в этих целях и плиты из древесных волокон, пластмассы с пористой основой. К ним относят пенополиуретан и пенопласт из полистирола.

    При производстве твердых изоляционных материалов используют гранулированные или суспензированные виды минеральной ваты и коллоидного связующего вещества. В качестве связующего вещества применяется клейстер из крахмала. Плиты окрашиваются и выпускаются с разного вида фактурой, объемная масса их составляет около 400 кг/м³.

    Прокладочные звукоизоляционные материалы препятствуют попаданию шума извне и не позволяют звукам распространяться дальше. Этот вид облицовки выпускается рулонами и плитами. Для их изготовления используют стекловолокно и минеральную вату, газонаполненные пластмассы.

    Гидроизоляция и классификация материалов

    Гидроизоляция применяется в строительстве для защиты построек от воздействия воды, жидких химических реагентов и конденсата. Гидроизоляционные вещества разделяются по назначению. Они обладают:

    • с антикоррозионными свойствами;
    • с антифильтрационными свойствами;
    • герметизирующие.

    Кроме того, все материалы разделяются между собой по составу материала. Бывают на основе:

    Схема гидроизоляции подвала рубероидом.

    • асфальта;
    • пластмассы;
    • минералов;
    • металла.

    Вещества на основе асфальта выпускаются в виде лаков и эмалей из битума, мастик, бетонов, асфальтов горячего и холодного способа приготовления. На основе пластмасс выпускаются разные полиэтиленовые пленки, эпоксидные лаки и краски из поливинила. Минеральные защитные средства для гидроизоляции выпускают в виде красок на основе силикатов и цементов, гидрофобных засыпок. В средствах для изоляции построек от влаги на основе металла применяют листы из металла и алюминиевую фольгу.

    По способу монтажа гидроизоляция бывает традиционной, которую приклеивают или с ее помощью обмазывают элементы зданий, и та, что обладает проникающим действием.

    Сегодня материалы проникающего действия более востребованы, чем традиционные, так как при взаимодействии с бетоном они заполняют пустоты и поры в нем водонерастворимыми соединениями. При этом сохраняется исходная паропроницаемость бетона.

    Пароизоляция защищает постройки и утеплитель от накапливания в них водяных паров.

    Материалами для изоляции от водяного пара служат такие виды защитных средств, как пергамин, толь, рубероид, ПВХ-мембраны, полимерные лаки и фольга.

    Промышленность выпускает огромное число изоляционных материалов, не описанных выше. К ним относятся разного рода защитные пропитки, герметики, мастики, антикоррозионные покрытия. Разработаны и появились в продаже ветроизоляционные вещества, защищающие кровлю и утеплитель от конденсата и выветриваний.

    Виды, свойства и область применения электроизоляционных материалов

    Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

    Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

    При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

    Электроизоляционные материалы и сферы их применения

    К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

    Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

    Свойства диэлектриков

    Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

    Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

    Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

    Параметры изоляции

    К числу основных относятся:

    • электропрочность;
    • удельное электрическое сопротивление;
    • относительная проницаемость;
    • угол диэлектрических потерь.

    Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

    Классификация диэлектрических материалов

    Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

    Классификация по агрегатному состоянию

    По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

    Твердые диэлектрики

    Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

    Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

    Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

    Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

    Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

    Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

    К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

    Жидкие диэлектрики

    Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

    Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

    • диэлектрическая проницаемость;
    • электропрочность;
    • электропроводность.

    Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

    Жидкие электроизоляторы можно разделить на три основные группы:

    1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
    2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
    3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

    Газообразные диэлектрики

    Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

    Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

    Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

    Классификация по происхождению

    По происхождению диэлектрики делятся на органические и неорганические.

    Органические диэлектрики

    Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

    Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

    Неорганические диэлектрики

    Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

    Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

    Волокнистые электроизоляционные материалы

    Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

    Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

    В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

    Классы нагревостойкости электроизоляционных материалов

    Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

    • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
    • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
    • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
    • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
    • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
    • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
    • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

    Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

    Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

  • Ссылка на основную публикацию