Из истории открытия алюминия. Поиск новых путей

История открытия алюминия

Соединения алюминия были известны человеку с древних времён. Одними из них являлись вяжущие вещества, к которым относятся алюмо-калиевые квасцы КAl(SO4)2. Они находили широкое применение. Они использовались в качестве протравы и как средство, останавливающее кровь. Пропитка древесины раствором алюмокалиевых квасцов делало её негорючей. Известен интересный исторический факт, как Архелай- полководец из Рима во время войны с персами приказал намазать башни, которые служили в качестве оборонительных сооружений, квасцами. Персам так и не удалось сжечь их.

Еще одним из соединений алюминия были природные глины, в состав которых входит оксид алюминия Al2O3.

Первые попытки получить алюминий только в середине XIX века. Попытка предпринятая датским учёным Х.К.Эрстедом увенчалась успехом. Для получения он использовал амальгированный калий в качестве восстановителя алюминия из оксида. Но что за металл был получен тогда выяснить так и не удалось. Через некоторое время, через два года, алюминий был получен немецким ученым-химиком Велером, который получил алюминий, используя нагревание безводного хлорида алюминия с металлическим калием.
Многие годы труда немецкого ученого не прошли даром. За 20 лет он сумел приготовить гранулированный металл. Он оказался похожим на серебро, но был значительно легче его. Алюминий был очень дорогим металлом, и вплоть до начала XX века, его стоимость была выше стоимости золота. Поэтому многие-многие годы алюминий использовался как музейный экспонат. Около 1807 г. Дэви попытался провести электролиз глинозема, получил металл, который был назван алюмиумом (Alumium) или алюминумом (Aluminum), что в переводе с латинского – квасцы.

Получение алюминия из глин интересовало не только ученых-химиков, но и промышленников. Алюминий очень тяжело было отделить от других веществ, это способствовало тому, что он был дороже золота. В 1886 году химиком Ч.М. Холлом был предложен способ, который позволил получать металл в больших количествах. Проводя исследования, он в расплаве криолита AlF3•nNaF растворил оксид алюминия. Полученную смесь поместил в гранитный сосуд и пропустил через расплав постоянный электрический ток. Он был очень удивлен, когда через некоторое время на дне сосуда он обнаружил бляшки чистого алюминия. Этот способ и в настоящее время является основным для производства алюминия в промышленных масштабах. Полученный металл всем был хорош, кроме прочности, которая была необходима для промышленности. И эта проблема была решена. Немецкий химик Альфред Вильм сплавил алюминий с другими металлами: медью, марганцем и магнием. Получился сплав, который был значительно прочнее алюминия.

Способы получения

Изобретение относится к способу получения алюминия путем электролитического выделения его из водных растворов одновременно с водородом. В способе используют жидкометаллический катод, например галлиевый. Содержание алюминия в металле повышают до 6 мас.%, выводят сплав из электролизера, охлаждают его в диапазоне от 98 до 26°С и выделяют алюминий кристаллизацией, получая первичный насыщенный твердый раствор с содержанием алюминия около 80 мас.%. Маточный раствор-сплав эвтектического состава возвращают на электролиз в качестве катодного металла, а первичный твердый раствор расплавляют и подвергают перекристаллизации при температурах ниже 660°С, отделяя последовательно вторичный, третичный и т.д. твердые растворы от жидкости до получения из них алюминия технической чистоты. Альтернативные методы производства алюминия – карботермический процесс, процесс Тодта, процесс Кувахара электролиз хлоридов, восстановление алюминия натрием – не обнаружили преимуществ перед методом Эру-Холла. Прототипом настоящего изобретения является наше предыдущее предложение того же названия, под N Получение алюминия из водных растворов одновременно с водородом, составляющее сущность этого изобретения, исключительно заманчиво, но его не удается реализовать из-за процессов пассивирования твердого алюминиевого катода оксидно-гидроксидными пленками переменного состава. Наши попытки реализации процесса в щелочеалюминатных, сернокислых, солянокислых и азотнокислых растворах в равной мере оказались безуспешными. В связи с этим мы предлагаем получать алюминий и водород на проточном жидкометаллическом катоде, на пример, на галлиевом или состоящем из сплава галлия с алюминием. Могут применяться при этом и другие легкоплавкие сплавы. Катода. В результате электролиз осуществляется легко и, в первом приближении, просто с гарантированным выделением алюминия в катодный сплав.

В промышленности алюминий получают электролизом Al2O3 в расплаве криолита Na3[AlF6] при температуре 950

2Al2O3 = 4Al(3+) + 6O(2-) = 2Al + 3O2

Основные реакции процессов:

CaF2 + H2SO4 → 2HF + CaSO4 (15.з)

SiO2 + 6HF →H2SiF6 + 2H2

HF и H2SiF6 — газообразные продукты, улавливаемые водой. Для обескремнивания полученного раствора в него вначале вводят расчетное количество соды:

H2SiF6 + Na2CO3 → Na2SiF6 + CO2 + H2O (15.и)

Трудно растворимый Na2SiF6 отделяют, а оставшийся раствор плавиковой кислоты нейтрализуют избытком соды и гидроксидом алюминия с получением криолита:

12HF + 3Na2CO3 + 2Al(OH)3 → 2(3NaF·AlF3) + 3CO2 + 9H2O (15.к)

Таким же путем могут быть раздельно получены NaF и AlF3, если обескремненный раствор плавиковой кислоты нейтрализовать рассчитанным количеством Na2CO3 или Al(OH)3.

Физические свойства

Алюминий – серебристо – белый металл , легкий , прочный. Плотность его 2,7 г/см3 , почти в три раза легче железа . Хорошо подвергается обработке : прокатывается , куется , штампуется , вытягивается в проволоку , обладает хорошей электрической проводимостью (после серебра и меди-лучший проводник теплоты и электричества)

Химические свойства

1)Металлический алюминий образует сплавы со многими металлами: Cu, In, Mg,Mn,Ni,Cr и тд.

2)Алюминий взаимодействует со многими неметаллами : в виде пыли и стружки горит в кислороде с выделением большого количества теплоты , образуя оксид алюминия:

4 Al + 3O2 → Al2O3

3)Алюминий взаимодействует со многими сложными веществами. По отношению к воде алюминий практически устойчив, так как он покрыт тонким оксидным слоем. При высокой температуре , лишенный защитной пленки , он взаимодействует с водой по уравнению

2Al + 6 H2O → 2Al(OH)3 + 3H2

Применение

Широко используется сплавы на основе алюминия , так как они легки, прочны, устойчивы на воздухе, в воде и кислотах. В электротехнике алюминий используется для производства массивных проводов в воздушных линиях, высоковольтных кабелях; в производстве электрических конденсаторов, выпрямителей, полупроводниковых приборов; как конструкционный материал в ядерных реакторах; в оборудовании и аппаратах пищевой промышленности . Ножи поставляют упакованными в коробку по 10 штук (кроме ампутационного), смазанными консервационной смазкой или герметизированными в полиэтиленовом пакете с ингибиторами коррозии.

Скальпели смазывают перед упаковкой тонким слоем натурального жира и укладывают по 10 шт. в картонные коробки с гнёздами, предохраняющими режущие кромки от затупления.

Медицинские кусачки: перед упаковкой каждый инструмент в отдельности, предварительно покрытый нейтральной смазкой, завёртывают в пергаментную или парафинированную бумагу и укладывают по 5—10 штук в картонные коробки. При длительном хранении инструмента пружина должна быть разгружена, для чего верхний её конец (направленный к губкам) следует вывести из плоскости инструмента, т. е. сместить с ветви в стороны и таким образом предупредить утомление пружины.

Допускается однотипные инструменты упаковывать в групповую тару без потребительской или скин-упаковку. Потребительская тара с инструментами должна быть упакована в групповую тару – коробки, пачки, пакеты, пробирки и другие прогрессивные виды тары. Материалы, применяемые для изготовления тары, и конструкция тары должны обеспечивать сохранность инструментов при транспортировании и хранении. Потребительская и групповая тара должны исключать возможность их вскрытия без нарушения целостности упаковки при транспортировании и хранении. При вскрытии упаковки с использованием тары многократного применения целостность тары не должна нарушаться. Поверхности потребительской и групповой тары не должны иметь перекосов, трещин, надрывов, короблений, отверстий, складок. На поверхности коробок из полимерных материалов допускаются следы от разъёма пресс-формы, литников и выталкивателей.

Заключение

Известно, что у р-элементов заполняется электронами р-подуровень внешнего электронного уровня, на котором могут находиться от одного до шести электронов.

В периодической системе 30 р-элементов. Эти p-элементы, или их p-электронные аналоги, образуют подгруппы IIIA, IVA, VA, VIA, VIIA и VI IIА. Строение внешнего электронного уровня атомов эле­ментов этих подгрупп развивается следующим образом: ns2 p1 , ns2 p2 , ns2 p3 , ns2 p4 , ns2 p5 и ns2 p6 .

В целом у p-элементов, кроме алюминия, восстановительная актив­ность выражена сравнительно слабо. Наоборот, при переходе от IIIA-к VIIA-подгруппе наблюдается усиление окислительной активности нейтральных атомов, растут величины сродства к электрону и энер­гии ионизации, увеличивается электроотрицательность р-элементов.

В атомах p-элементова валентны не только р-электроны, но и s-электроны внешнего уровня. Высшая положительная степень окисле­ния р-электронных аналогов равна номеру группы, в которой они на­ходятся.

Список литературы

1. Дроздов А.А., Органическая химия 2012 год

2. Комиссаров Л.Н., Неорганическая химия 2011 год

3. Несвежиский С.Н., формулы по химии 2012

4. Третьякова Ю.Д., Неорганическая химия 2011-2012 год

§1. История открытия алюминия

Соединения алюминия были известны человеку с древних времён. Одними из них являлись вяжущие вещества, к которым относятся алюмо-калиевые квасцы КAl(SO4)2. Они находили широкое применение. Они использовались в качестве протравы и как средство, останавливающее кровь. Пропитка древесины раствором алюмокалиевых квасцов делало её негорючей. Известен интересный исторический факт, как Архелай- полководец из Рима во время войны с персами приказал намазать башни, которые служили в качестве оборонительных сооружений, квасцами. Персам так и не удалось сжечь их.

Еще одним из соединений алюминия были природные глины, в состав которых входит оксид алюминия Al2O3.

Первые попытки получить алюминий только в середине XIX века. Попытка предпринятая датским учёным Х.К.Эрстедом увенчалась успехом. Для получения он использовал амальгированный калий в качестве восстановителя алюминия из оксида. Но что за металл был получен тогда выяснить так и не удалось. Через некоторое время, через два года, алюминий был получен немецким ученым-химиком Велером, который получил алюминий, используя нагревание безводного хлорида алюминия с металлическим калием. Многие годы труда немецкого ученого не прошли даром. За 20 лет он сумел приготовить гранулированный металл. Он оказался похожим на серебро, но был значительно легче его. Алюминий был очень дорогим металлом, и вплоть до начала XX века, его стоимость была выше стоимости золота. Поэтому многие-многие годы алюминий использовался как музейный экспонат. Около 1807 г. Дэви попытался провести электролиз глинозема, получил металл, который был назван алюмиумом (Alumium) или алюминумом (Aluminum), что в переводе с латинского – квасцы.

Читайте также:  Зимуем с комфортом: как сделать автономное отопление в доме

Получение алюминия из глин интересовало не только ученых-химиков, но и промышленников. Алюминий очень тяжело было отделить от других веществ, это способствовало тому, что он был дороже золота. В 1886 году химиком Ч.М. Холлом был предложен способ, который позволил получать металл в больших количествах. Проводя исследования, он в расплаве криолита AlF3•nNaF растворил оксид алюминия. Полученную смесь поместил в гранитный сосуд и пропустил через расплав постоянный электрический ток. Он был очень удивлен, когда через некоторое время на дне сосуда он обнаружил бляшки чистого алюминия. Этот способ и в настоящее время является основным для производства алюминия в промышленных масштабах. Полученный металл всем был хорош, кроме прочности, которая была необходима для промышленности. И эта проблема была решена. Немецкий химик Альфред Вильм сплавил алюминий с другими металлами: медью, марганцем и магнием. Получился сплав, который был значительно прочнее алюминия.

§2. Способы получения

Изобретение относится к способу получения алюминия путем электролитического выделения его из водных растворов одновременно с водородом. В способе используют жидкометаллический катод, например галлиевый. Содержание алюминия в металле повышают до 6 мас.%, выводят сплав из электролизера, охлаждают его в диапазоне от 98 до 26°С и выделяют алюминий кристаллизацией, получая первичный насыщенный твердый раствор с содержанием алюминия около 80 мас.%. Маточный раствор-сплав эвтектического состава возвращают на электролиз в качестве катодного металла, а первичный твердый раствор расплавляют и подвергают перекристаллизации при температурах ниже 660°С, отделяя последовательно вторичный, третичный и т.д. твердые растворы от жидкости до получения из них алюминия технической чистоты.

Альтернативные методы производства алюминия – карботермический процесс, процесс Тодта, процесс Кувахара электролиз хлоридов, восстановление алюминия натрием – не обнаружили преимуществ перед методом Эру-Холла.

Прототипом настоящего изобретения является наше предыдущее предложение того же названия, под N Получение алюминия из водных растворов одновременно с водородом, составляющее сущность этого изобретения, исключительно заманчиво, но его не удается реализовать из-за процессов пассивирования твердого алюминиевого катода оксидно-гидроксидными пленками переменного состава. Наши попытки реализации процесса в щелочеалюминатных, сернокислых, солянокислых и азотнокислых растворах в равной мере оказались безуспешными.

В связи с этим мы предлагаем получать алюминий и водород на проточном жидкометаллическом катоде, на пример, на галлиевом или состоящем из сплава галлия с алюминием. Могут применяться при этом и другие легкоплавкие сплавы. Катода. В результате электролиз осуществляется легко и, в первом приближении, просто с гарантированным выделением алюминия в катодный сплав.

В промышленности алюминий получают электролизом Al2O3 в расплаве криолита Na3[AlF6] при температуре 950

2Al2O3 = 4Al(3+) + 6O(2-) = 2Al + 3O2

Основные реакции процессов:

CaF2 + H2SO4 → 2HF + CaSO4 (15.з)

SiO2 + 6HF →H2SiF6 + 2H2

HF и H2SiF6 — газообразные продукты, улавливаемые водой. Для обескремнивания полученного раствора в него вначале вводят расчетное количество соды:

H2SiF6 + Na2CO3 → Na2SiF6 + CO2 + H2O (15.и)

Трудно растворимый Na2SiF6 отделяют, а оставшийся раствор плавиковой кислоты нейтрализуют избытком соды и гидроксидом алюминия с получением криолита:

12HF + 3Na2CO3 + 2Al(OH)3 → 2(3NaF·AlF3) + 3CO2 + 9H2O (15.к)

Таким же путем могут быть раздельно получены NaF и AlF3, если обескремненный раствор плавиковой кислоты нейтрализовать рассчитанным количеством Na2CO3 или Al(OH)3.

История алюминия. Описание

Алюминий – самый известный и древний металл. В виде различных глинистых соединений он был знаком человечеству с незапамятных времен. Античные историки свидетельствовали о том, что “люмен” ( в переводе с латинского квасцы) или сульфат алюминия-калия применяли в самых разных областях деятельности: и как протраву для окрашивания тканей, и как огнезащитное средство, а также использовали для изготовления различных бытовых изделий и украшений.

История получения и применения алюминия

В середине XIX века в Западной Европе ученые отчаянно пытались получить алюминий в чистом виде. В 1825 году датский исследователь Х.К. Эрстед первым осуществил подобный опыт, используя калий в виде амальгамы. К сожалению, тогда не удалось точно определить полученное вещество.

Однако спустя два года получением алюминия заинтересовался немецкий ученый Велер. Он использовал для восстановления металла чистый калий. Через 20 лет упорных поисков ему удалось получить чистый алюминий в виде гранул размером со спичечную головку. Алюминий оказался красивым и легким металлом, похожим на серебро. Эти свойства алюминия и определили его высокую стоимость на тот период истории: он оценивался дороже золота.

В 1855 г. на выставке в Париже алюминий являлся главной достопримечательностью. Ювелирные изделия из алюминия располагались по соседству с бриллиантами французской короны. Алюминий стал очень модным металлом. Его считали благородным элементом, созданным природой для создания шедевров искусства.

Поскольку физические и химические свойства алюминия были изучены слабо, ювелиры самостоятельно изобретали способы его обработки. Мягкость и податливость металла позволяла создавать им изделия любой формы, делать отпечатки замысловатых узоров, наносить разнообразные рисунки. Алюминий покрывали золотом, полировали, матировали.

Однако со временем алюминий стал выходить из моды. В середине 1860-х годов килограмм этого металла уже стоил всего около ста старых франков, по сравнению с 3 тысячами в 1854-1856 гг.

В настоящее время первые алюминиевые изделия представляют огромную ценность. К сожалению, большую часть из них почитатели моды заменили золотом, серебром и другими драгоценными сплавами и металлами.

Однако ученых изменчивая мода не остановила. В 1886 году химик Чарльз Мартин Холл стал автором дешевого способа получения алюминия в больших количествах. Он добавил и растворил в расплавленном криолите (соединении алюминия с натрием и фтором) небольшую часть окиси алюминия. Затем, поместив смесь в гранитный сосуд, пропустил через нее электрический ток. После нескольких часов ожидания на дне сосуда он увидел блестящие «пуговицы» чистого алюминия. Работавший в то время в России австрийский инженер Карл Жозеф Байер не остался в стороне и предложил технологию получения глинозема, которая помогла сделать новый способ еще дешевле. В результате вариант получения алюминия, разработанный Байером и Холлом, до сих пор используется в современном производстве.

Совершенствование свойств алюминия

Новый материал, который теперь можно было применять в промышленности, был всем хорош. Однако отмечалось, что чистый алюминий недостаточно прочен для некоторых областей применения.

В борьбу с этой проблемой вступил немецкий химик Альфред Вильм, который сплавил его с небольшим количеством магния, меди и марганца. Полученный сплав был настолько прочен, что в 1911 году в городке Дюрене была выпущена партия материала, названного в его честь дюралюминием. Чуть позже в 1919 году из него был выполнен первый самолет. Так алюминий с триумфом завоевал весь мир.

В настоящее время трудно назвать отрасль промышленности, обходящуюся без этого легкого серебристого металла. Алюминий, занимающий 3 место по концентрации в земной коре после кислорода и кремния, с новой силой притягивает к себе внимание специалистов как металл будущего. Совокупность таких его достоинств, как малая плотность, высокая тепло- и электропроводность, прочностные характеристики, а также высокая устойчивость к коррозии и технологичность, позволяют отнести алюминий к числу самых ценных материалов планеты.

История Азербайджана

Научно-популярный портал по истории Азербайджана

  • Home
  • /
  • Мировая история
  • /
  • Как появился алюминий

Как появился алюминий

О.БУЛАНОВА

В нашей жизни постоянно присутствует металл. Железо, медь, золото, серебро… Есть еще одни, но на него мы как-то мало обращаем внимания, хотя у любой хозяйки в хозяйстве найдется пара кастрюлек из этого металла. Речь идет об алюминии.

Первые попытки получить алюминий начали предприниматься только в XIX в. Около 1808 г. английский химик Гемфри Дэви попытался провести электролиз глинозема и получил металл, который был назван алюмиумом или алюминумом, что в переводе с латинского означает те самые, давно известные человечеству квасцы. (Кстати, попытаться-то Дэви попытался, но подтвердить теорию практикой так и не смог.)

В 1825 г. датский физик Ханс Кристиан Эрстед впервые в мире получил алюминий из его оксида: смешал глинозем с углем, разогрел смесь и пропустил через нее хлор.

Полученный в результате хлористый алюминий подогрел с амальгамой калия (калий, растворенный в ртути) и получил амальгаму алюминия. Продистиллировав раствор, Эрстед получил несколько небольших слитков не совсем чистого алюминия. Ученый сообщил об открытии и прекратил эксперименты, потому что выяснить, что за металл был получен, тогда так и не удалось.

Его работу продолжил немецкий химик Фридрих Велер, который в 1827 г. получил около 30 гр алюминия в виде порошка, пропуская пары хлористого алюминия над металлическим калием. Ему понадобилось еще 18 лет непрерывных опытов, чтобы в 1845 г. получить небольшие шарики застывшего расплавленного алюминия (корольки).

Читайте также:  Дом без фасада – уникальный дизайн-проект элитного жилья в мадриде

Но эти способы не могли быть применены в промышленности, потому что использовали очень дорогой калий. Приходилось искать другие пути.

В 1855 г. на всемирной Парижской выставке французский химик и технолог Сен- Клер Девилль демонстрировал первый алюминий, полученные путем нагревание хлористого алюминия с натрием.

Он усовершенствовал метод Велера и уже в 1856 г. открылось первое предприятие алюминиевой промышленности – завод братьев Шарля и Александра Тисье в Руане. Химическим способом Девиля в 1855-1890 гг. было получено 200 т алюминия.

Из-за трудностей, связанных с выделением алюминия из соединений он долго был очень дорогим металлом, и вплоть до начала XX в. его стоимость была выше стоимости золота. Поэтому долгие годы первый алюминий использовался как музейный экспонат.

Из первого алюминия изготавливали ювелирные украшения, статуэтки, медали и пр. Первыми считаются медали с барельефами Наполеона III, который всячески поддерживал развитие производства алюминия, и Фридриха Велера, а также погремушка наследного принца Луи-Наполеона из алюминия и золота.

Кстати, алюминиевыми приборами укомплектовывались в советское время школьные и производственные столовые, точки общепита и т.п. Эти приборы были более чем дешевы: украдут их посетители, сломают (а ломается алюминий очень легко), потеряют – так не жалко.

Но вернемся в историю – в годы первых ювелирных украшений из алюминия. Над алюминием тряслись, однако уже тогда Девиль понимал, что будущее алюминия связано отнюдь не с ювелирным делом.

Он писал: “Нет ничего труднее, чем заставить людей использовать новый металл. Предметы роскоши и украшения не могут служить единственной областью его применения. Я надеюсь, что настанет время, когда алюминий будет служить удовлетворению повседневных нужд”.

Получение алюминия из глин интересовало не только ученых-химиков, но и промышленников. Поэтому ученые трудились, не покладая рук. Ситуация изменилась с открытием более дешевого электролитического способа производства алюминия в 1886 г.

Его одновременно и независимо друг от друга разработали французский инженер Поль Эру и американский студент Чарльз Холл.

Проводя исследования, Холл в расплаве криолита растворил оксид алюминия. Полученную смесь поместил в гранитный сосуд и пропустил через нее постоянный электрический ток. Он был очень удивлен, когда через некоторое время на дне сосуда обнаружил бляшки чистого алюминия. Предложенный метод позволял получать металл в больших количествах, но требовал большого количества электроэнергии.

Однако очень может быть, что все эти открытия, позволяющие получать чистый алюминий из соединений, это то самое новое, которое хорошо забытое старое.

Потому что еще в “Естественной истории” римского ученого Плиния Старшего говорится о легенде I в., в которой мастер дарит императору Тиберию чашу из неизвестного металла – похожую на серебряную, но при этом очень легкую. Что, если это была чаша из алюминия?

Дорогая, ценная – судя по тому, что это был подарок императору: властителям дешевого не дарят.

Но перенесемся вновь во времена Холла и Эру, когда метод был найден, но большие энергозатраты требовали придумать что-то еще. Поэтому свое первое производство Эру организовал на металлургическом заводе в Нейгаузене (Швейцария), рядом со знаменитым Рейнским водопадом, сила падающей воды которого приводила в действие динамо-машины предприятия.

И вот 18 ноября 1888 г. между Швейцарским металлургическим обществом и немецким промышленником Ратенау было подписано соглашение об учреждении в Нейгаузене АО Алюминиевой промышленности с общим капиталом в 10 млн швейцарских франков.

Позднее его переименовали в Общество алюминиевых заводов. На его торговой марке было изображено солнце, восходящее из-за алюминиевого слитка, что должно было, по замыслу Ратенау, символизировать зарождение алюминиевой промышленности. За 5 лет производительность завода возросла более чем в 10 раз: если в 1890 г. в Нейгаузене было выплавлено всего 40 т алюминия, то в 1895 г. – 450 т.

Холл же, воспользовавшись поддержкой друзей, организовал Питтсбургскую восстановительную компанию, которая запустила свой первый завод в Кенсингтоне неподалеку от Питтсбурга 18 сентября 1888 г.

В первые месяцы он выпускал лишь около 20-25 кг алюминия в сутки, а в 1890 г. – уже по 240 кг ежедневно. (В 1907 г. Питтсбургская восстановительная компания была реорганизована в Американскую алюминиевую компанию – “Alcoa”.)

Свои новые заводы компания расположила в штате Нью-Йорк вблизи новой Ниагарской ГЭС.

В 1889 г. технологичный и дешевый метод производства глинозема – оксида алюминия, основного сырья для производства металла – изобрел австрийский химик Карл Иосиф Байер, работая в Санкт-Петербурге на Тентелевском заводе.

В одном из экспериментов ученый добавил в щелочной раствор боксит и нагрел в закрытом сосуде – боксит растворился, но не полностью. В не растворившемся остатке Байер не обнаружил алюминия – оказалось, что при обработке щелочным раствором весь алюминий, содержащийся в боксите, переходит в раствор.

Таким образом, за несколько десятилетий была создана алюминиевая промышленность, завершилась история о “серебре из глины” и алюминий стал новым промышленным металлом.

На рубеже XIX и XX вв. алюминий стал применяться в самых разных сферах и дал толчок для развития целых отраслей. В 1891 г. по заказу Альфреда Нобеля в Швейцарии создается первый пассажирский катер “Le Migron” с алюминиевым корпусом.

В 1894 г. шотландская судостроительная верфь “Yarrow & Co” представила изготовленную из алюминия 58-метровую торпедную лодку. Этот катер назывался “Сокол”, был сделан для военно-морского флота Российской империи и развивал рекордную для того времени скорость в 32 узла.

В том же году американская железнодорожная компания “New York, New Haven, and Hartford Railroad”, принадлежавшая банкиру Джону Пирпонту Моргану, начала выпускать специальные легкие пассажирские вагоны с сиденьями из алюминия. А всего через 5 лет на выставке в Берлине Карл Бенц представил первый спортивный автомобиль с алюминиевым корпусом.

На площади Пиккадили в Лондоне в 1893 г. появилась алюминиевая статуя древнегреческого бога Антероса. Высотой почти в 2,5 м, она стала первой крупной работой из этого металла в сфере искусства – а ведь совсем недавно каминные часы или статуэтки считались роскошью, доступной только высшему обществу.

Но настоящую революцию алюминий совершил в авиации, за что навсегда заслужил свое второе имя – “крылатый металл”. В этот период изобретатели и авиаторы во всем мире работали над созданием самолетов.

Алюминий всем был хорош – кроме прочности, которая была необходима для промышленности. Но и эта проблема была решена. Немецкий химик Альфред Вильм сплавил алюминий с другими металлами: медью, марганцем и магнием.

Получился сплав, который был значительно прочнее алюминия. На его получение ушло семь лет. В промышленных масштабах такой сплав был получен в немецком местечке Дюрене в 1911 г. Этот сплав был назван дюралюминием, в честь городка.

Первым из дюралюминия был сделан фюзеляж первого цельнометаллического самолета в мире Junkers J1, разработанного в 1915 г. одним из основателей мирового авиастроения, знаменитым немецким авиаконструктором Хуго Юнкерсом.

История развития алюминиевой промышленности

Античная легенда

Первое упоминание о металлическом алюминии обнаружено в трудах First Century Roman. В знаменитой энциклопедии Плиния Младшего “Historia naturalis”, опубликованной в 79 г., описана следующая история. Однажды римскому ювелиру позволили показать императору Тибериусу обеденную тарелку из нового металла. Тарелка была очень светлой и блестела, как серебро. Ювелир рассказал императору, что он добыл металл из обыкновенной глины. Он заверил императора, что только он и боги знают, как получить металл из глины. Император очень заинтересовался открытием ювелира. Однако он сразу понял, что вся его казна золота и серебра обесценится, если люди начнут производить этот светлый металл из глины. Поэтому, вместо ожидаемого ювелиром вознаграждения, он был обезглавлен.

Открытие алюминия Г. Эрстедом

Неизвестно, насколько правдива эта история, но описанные события происходили за 2000 лет до открытия человечеством способа производства алюминия. Это произошло в 1825 г., когда датский физик Г. Эрстед получил несколько миллиграммов металлического алюминия.
Латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия KAl(SO4)2·(12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом.я термическим восстановлением хлорида алюминия калиевой амальгамой.

Трудности в получении алюминия

  1. Большое сродство алюминия к кислороду. Алюминий может быть восстановлен углеродом из оксида при температуреоколо 2000°С. Однако уже при 1500°С углерод взаимодействует с алюминием, давая карбид.
  2. Высокий электрохимический потенциал алюминия (-1,67 В). Из водных растворов получить алюминий невозможно, так как на катоде практически будет идти процесс выделения водорода (разложения воды).
  3. Высокая температура плавления глинозема (2050°С), что исключает возможность проведения электролиза расплавленного глинозема.

Начало промышленного производства

Промышленное производство алюминия связано с именем француза Анри Сент-Клер Девиля. Ему хорошо были известны эксперименты Г. Эрстеда и другого ученого — Ф. Велера, которому в 1827 г. удалось выделить крупинки алюминия. Причиной неудачи Ф. Велера было то, что эти крупинки на воздухе немедленно покрывались тончайшей пленкой оксида: алюминия.
Прежде всего А.С.-К. Девиль в процессе получения металла заменяет калий более дешевым натрием и проводит лабораторные опыты в крупном масштабе. Полученный хлорид алюминия загружался в большую стальную трубу, в которой на равном расстоянии друг от друга были расставлены сосуды, наполненные металлическим натрием. При нагреве происходило взаимодействие хлорида алюминия с натрием в газовой фазе и частицы алюминия оседали на дно трубы. Образованные в результате реакции зернышки тщательно собирали, плавили и получали слитки металла.

Читайте также:  Станция «Тропарево» в Сокольниках откроется осенью 2020

Новый способ производства алюминия оказался очень трудоемким. Кроме того, взаимодействие паров хлорида алюминия с натрием нередко протекает со взрывом. В лабораторных условиях это не представляло серьезной опасности, а в заводских условиях могло вызвать катастрофу. А.С.-К. Девиль заменил хлорид алюминия смесью AlС13 с NaCl. Теперь участники реакции находились в расплавленном состоянии. Взрывы прекратились, но, что самое главное, вместо небольших корольков металла, которые надо было собирать вручную, получали значительное количество жидкого алюминия.

Опыты на заводе Жавеля увенчались успехом. В 1855 г. был получен первый слиток металла массой 6—8 кг.

Эстафету производства алюминия химическим способом продолжил русский ученый Н.Н. Бекетов. Он проводил реакцию взаимодействия между криолитом (Na3AlF6) и магнием. Способ Н.Н. Бекетова мало чем отличался от метода А.С.-К. Девиля, но был проще. В немецком городе Гмелингеме в 1885 г. был построен завод, использующий способ Н.Н. Бекетова, где за пять лет было получено 58т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890г.

Получение алюминия химическим способом не могло обеспечить промышленность дешевым металлом. Он был малопроизводителен и не давал чистый без примесей алюминий.

Получение алюминия электролизом

Это заставило исследователей разных стран мира искать новые способы производства алюминия.
На помощь ученым пришел электрический ток. Еще в 1808 г. Г. Дэви пытался разложить глинозем с помощью мощной электрической батареи, но безуспешно. Спустя почти 50 лет Р. Бунзен и А.С.-К. Девиль независимо друг от друга провели электролиз смеси хлоридов алюминия и натрия. Они были удачливее своего предшественника и сумели получить маленькие капельки алюминия. Однако в те времена не было еще дешевых и достаточно мощных источников электроэнергии. Поэтому электролиз алюминия имел только чисто теоретический интерес.

В 1867 г. была изобретена динамо-машина, а вскоре электроэнергию научились передавать на большие расстояния. Электричество начало вторгаться в промышленность.

В 1886 г. П. Эру во Франции и Ч. Холл в США почти одновременно положили начало современному способу производства алюминия, предложив получать его электролизом глинозема, растворенного в расплавленном криолите (способ Холла — Эру). С этого момента новый способ производства алюминия начинает быстро развиваться, чему способствовали усовершенствование электротехники, а также разработка способов извлечения глинозема из алюминиевых руд. Значительный вклад в развитие производства глинозема внесли русские ученые К.И. Байер, Д.А. Пеняков, А.Н. Кузнецов, Е.И. Жуковский, А.А. Яковкин и др.

История металлургии алюминия

В истории металлургии алюминия возможно различить три периода, характеризующиеся определенными методами, применяемыми для получе­ния этого металла!. Эти периоды следующие: 1) получение алюминия хи­мическими методами, 2) получение алюминия электротермическим путем и 3) получение алюминия электролизом расплавленных солей.

Открытие алюминия и получение его химическими методами

Первоначальные попытки выделения алюминия в свободном состоянии относятся к 1807 г. и принадлежат знаменитому английскому химику Гемфри Дэви (1778—1629). Последнему до этого времени удалось впервые получить металлические калий и натрий электролизом расплавленных едких щелочей. В качестве источника тока Дэви пользовался вольтовым столбом. J

С цёлью выделения алюминия Дэви тем же путем пытался разложить глинозем. Для этого он пропускал электрический ток через слегка увлаж­ненную и находящуюся в атмосфере водорода гидроокись алюминия. При этом в качестве анода служила платиновая пластинка, на которой поме­щалась плотно спрессованная гидроокись алюминия, а катодом — погру­женная в нее железная проволока. При пропускании тока последняя раскалялась добела и оплавлялась.

Таким путем Дэви получил только железоалюминиевый сплав, из ко­торого выделить свободный алюминий он не смог. Точно так же оказа­лись безуспешными опыты Дэви по восстановлению глинозема парами ка­лия в присутствии Железных опилок.

Фиг.1 Получение алюминия по методу Сен-Клер-Девилля. Первая мастерская в районе Парижа

Из полученного сплава железа с алюминием последний выделить в чи­стом виде Дэви также не удалось.

Все это, однако, не помешало Дэви быть уверенным в том, что глино­зем является химическим производным предполагаемого металла, которому он заранее дал название aluminum (алюминум), образовав его от англий­ского наименования глинозема — alumina.

Свободный алюминий впервые был выделен датским физиком Гансом Эрстедом (1777—1851) в марте .1825 г. С этой целью Эрстед получил амальгаму алюминия, восстановив хлорид алюминия (также им впервые полученный) «амальгамой калия. Дестиллируя затем без доступа воздуха ртуть из полученной алюминиевой амальгамы, Эрстед извлек таким обра­зом небольшие комочки алюминия — «металла из глины», по цвету и блеску похожего на олово.

Позднее, в 1827 г., немецкий химик Фридрих Ведер (1800—1882) улуч­шил метод Эрстеда, заменив амальгаму калия металлическим калием. В фарфоровый или платиновый тигель Велер помещал несколько кусочков металлического калия, сверху засыпал их кристаллами хлорида алюминия, и закрытый крышкой тигель осторожно нагревал на горелке. Полученная в результате реакции серо-черная плавленая масса после охлаждения вы­щелачивалась водой; твердый остаток представлял собой порошкообраз­ный алюминий. Так как взаимодействие между калием и хлоридом алюми­ния при их непосредственном сплавлении протекало крайне бурнее Велер в 1845 г. применил измененный вариант своего способа, нагревая эти ве­щества раздельно и пропуская пары хлорида алюминия над калием. При­меняя этот метод. Велер получил алюминий в количествах, достаточных для определения его важнейших физических и химических свойств.

История получения алюминиевых сплавов электротермическим путем

В истории металлургии алюминия должны быть отмечены работы бр. Каулес по электротермическому производству алюминиевых сплавов, (от­носящиеся к концу прошлого (Столетия. После ряда безуспешных попыток получения чистого, свободного от карбида, алюминия восстановлением глинозема углеродом, Каулес пришли к необходимости вести этот процесс в присутствии других, менее химически активных металлов. В результате ими был разработан промышленный метод электротермического получения сплавов алюминия с медью и железом — алюминиевой бронзы и ферро­алюминия.

Для получения этих сплавов бр. Каулес применяли дуговые печи на 5000—6000 а и 60 в (фиг. 2). В печь вводилась шихта из глинозема, дре­весного угля и металлического скрапа (железа или меди). Алюминиевая бронза получалась с содержанием до 17% Аl и ферроалюминий до 20% Аl. Расход электроэнергии составлял в среднем 37 квт-ч на 1 кг алюми­ния в сплаве.

Фиг. 2. Дуговые электропечи бр. Каулес

По методу бр. Каулес в Англии и США с 1884 по 1892 г. работали заводы, выпускавшие сплавы на, рынок. Однако в таком виде электротер­мический способ производства алюминиевых сплавов конкурировать с бо­лее дешевым электролитическим методом не мог.

Только в настоящее время электротермическое производство алюми­ниевых сплавов, главным образом с кремнием, вновь получило значитель­ное развитие как одна из специальных областей металлургии алюминия.

История получения алюминия электролизом расплавленных солей

В 1852 г. Роберт Бунэен (1811—1899), подвергая электролизу расплав­ленный хлорид магния, получил металлический магний. Продолжая свои исследования, Бунзен применил этот же метод для выделения металличе­ского -алюминия. Последний и был им получен в 1854 г. электролизом рас­плавленного двойного хлорида алюминия и натрия.

Сен-Клер-Девилль, проводя свои исследования независимо от Бунзена, в это же самое время также получил металлический алюминий электроли­зом двойного хлорида алюминия и натрия. В марте 1854 г. Сен-Клер- Девилль представил французской Академии наук вместе с описанием) своих опытов маленький королек алюминия, выделенный им электролитическим путем. 9 июля того же года Бунзен опубликовал результаты своих работ в «Поггендорфс Аннален».

Опыты Бунзена и Сен-Клер-Девилля не вышли, /однако, за пределы лаборатории ввиду невозможности получить в то время значительные количества электроэнергии.

Понадобилось свыше 30 лет, прежде чем принцип получения «алюминия электролизом расплавленных солей нашел свое осуществление в промыш­ленное! и.

Мощным толчком для развития электролитиче­ского метода послужило «изобретение в ,1867 г. бр. Грамм динамомашины.

Основоположнийами современного электролити­ческого способа производства металлического алю­миния являются Поль Эру (1863—1914) во Фракции и Чарльз Холл (1863—1914) в США, 23 апреля 1886 г. Эру и 9 июля того же года Холл заявили’ почти аналогичные патенты на способ получе­ния алюминия электролизом глинозема растворенного в расплавленном криолите.

Эти даты собственно и следует считать’ нача­лом развития современной мировой алюминиевой промышленности и вместе с тем началом широкого использования алюминия. Необходимо отметить, что появлению патентов Эру и Холла предшество­вало накопление значительного практического и теоретического материала, полученного большим числом исследователей, много работавших над воп­росом электролиза расплавленных алюминиевых солей. ,

Роль Эру и Холла заключалась, пожалуй, не столько в ношзне их открытия, сколько в удачном сочетании «уже известных положений, оформленных ими в метод, пригодный для промышленного использования.

Эру, будучи студентом Горной школы в Париже, уже в 1888 г. инте­ресовался электролитическим методом получения алюминия. Об этом сви­детельствует набросок электролиза в его тетради, датированный этим го­дом (фиг. 3). Весьма показательно, что этот набросок чрезвычайно бли­зок к эскизу из первого патента Эру

Ссылка на основную публикацию